» Articles » PMID: 35868615

Transient Brain-wide Coactivations and Structured Transitions Revealed in Hemodynamic Imaging Data

Overview
Journal Neuroimage
Specialty Radiology
Date 2022 Jul 22
PMID 35868615
Authors
Affiliations
Soon will be listed here.
Abstract

Brain-wide patterns in resting human brains, as either structured functional connectivity (FC) or recurring brain states, have been widely studied in the neuroimaging literature. In particular, resting-state FCs estimated over windowed timeframe neuroimaging data from sub-minutes to minutes using correlation or blind source separation techniques have reported many brain-wide patterns of significant behavioral and disease correlates. The present pilot study utilized a novel whole-head cap-based high-density diffuse optical tomography (DOT) technology, together with data-driven analysis methods, to investigate recurring transient brain-wide patterns in spontaneous fluctuations of hemodynamic signals at the resolution of single timeframes from thirteen healthy adults in resting conditions. Our results report that a small number, i.e., six, of brain-wide coactivation patterns (CAPs) describe major spatiotemporal dynamics of spontaneous hemodynamic signals recorded by DOT. These CAPs represent recurring brain states, showing spatial topographies of hemispheric symmetry, and exhibit highly anticorrelated pairs. Moreover, a structured transition pattern among the six brain states is identified, where two CAPs with anterior-posterior spatial patterns are significantly involved in transitions among all brain states. Our results further elucidate two brain states of global positive and negative patterns, indicating transient neuronal coactivations and co-deactivations, respectively, over the entire cortex. We demonstrate that these two brain states are responsible for the generation of a subset of peaks and troughs in global signals (GS), supporting the recent reports on neuronal relevance of hemodynamic GS. Collectively, our results suggest that transient neuronal events (i.e., CAPs), global brain activity, and brain-wide structured transitions co-exist in humans and these phenomena are closely related, which extend the observations of similar neuronal events recently reported in animal hemodynamic data. Future studies on the quantitative relationship among these transient events and their relationships to windowed FCs along with larger sample size are needed to understand their changes with behaviors and diseased conditions.

Citing Articles

Diffuse optical tomography for mapping cerebral hemodynamics and functional connectivity in delirium.

Jiang S, Huang J, Yang H, Czuma R, Farley L, Cohen-Oram A Alzheimers Dement. 2024; 20(6):4032-4042.

PMID: 38700095 PMC: 11180861. DOI: 10.1002/alz.13827.


Distinct Time-Resolved Brain-Wide Coactivations in Oxygenated and Deoxygenated Hemoglobin.

Khan A, Yuan H, Smith Z, Ding L IEEE Trans Biomed Eng. 2024; 71(8):2463-2472.

PMID: 38478444 PMC: 11364165. DOI: 10.1109/TBME.2024.3377109.


Controlling jaw-related motion artifacts in functional near-infrared spectroscopy.

Zhang F, Reid A, Schroeder A, Ding L, Yuan H J Neurosci Methods. 2023; 388:109810.

PMID: 36738847 PMC: 10681683. DOI: 10.1016/j.jneumeth.2023.109810.

References
1.
Yousefi B, Shin J, Schumacher E, Keilholz S . Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal. Neuroimage. 2017; 167:297-308. PMC: 5845807. DOI: 10.1016/j.neuroimage.2017.11.043. View

2.
Chen Y, Tang J, Chen Y, Farrand J, Craft M, Carlson B . Amplitude of fNIRS Resting-State Global Signal Is Related to EEG Vigilance Measures: A Simultaneous fNIRS and EEG Study. Front Neurosci. 2020; 14:560878. PMC: 7744746. DOI: 10.3389/fnins.2020.560878. View

3.
Chang C, Glover G . Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage. 2009; 50(1):81-98. PMC: 2827259. DOI: 10.1016/j.neuroimage.2009.12.011. View

4.
Majeed W, Magnuson M, Hasenkamp W, Schwarb H, Schumacher E, Barsalou L . Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. Neuroimage. 2010; 54(2):1140-50. PMC: 2997178. DOI: 10.1016/j.neuroimage.2010.08.030. View

5.
Vincent J, Patel G, Fox M, Snyder A, Baker J, Van Essen D . Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007; 447(7140):83-6. DOI: 10.1038/nature05758. View