» Articles » PMID: 35865706

The Cellular and Molecular Effects of Fetoscopic Endoluminal Tracheal Occlusion in Congenital Diaphragmatic Hernia

Abstract

Congenital diaphragmatic hernia (CDH) is a complex disease associated with pulmonary hypoplasia and pulmonary hypertension. Great strides have been made in our ability to care for CDH patients, specifically in the prenatal improvement of lung volume and morphology with fetoscopic endoluminal tracheal occlusion (FETO). While the anatomic effects of FETO have been described in-depth, the changes it induces at the cellular and molecular level remain a budding area of CDH research. This review will delve into the cellular and molecular effects of FETO in the developing lung, emphasize areas in which further research may improve our understanding of CDH, and highlight opportunities to optimize the FETO procedure for improved postnatal outcomes.

Citing Articles

Fetoscopic Endoluminal Tracheal Occlusion-Synergic Therapies in the Prenatal Treatment of Congenital Diaphragmatic Hernia.

Bara Z, Gozar H, Nagy N, Gurzu S, Derzsi Z, Forro T Int J Mol Sci. 2025; 26(4).

PMID: 40004103 PMC: 11855672. DOI: 10.3390/ijms26041639.


Molecular insights using spatial transcriptomics of the distal lung in congenital diaphragmatic hernia.

Lingappan K, Olutoye 2nd O, Cantu A, Cantu Gutierrez M, Cortes-Santiago N, Hammond J Am J Physiol Lung Cell Mol Physiol. 2023; 325(4):L477-L486.

PMID: 37605849 PMC: 10639013. DOI: 10.1152/ajplung.00154.2023.


Connecting clinical, environmental, and genetic factors point to an essential role for vitamin A signaling in the pathogenesis of congenital diaphragmatic hernia.

Gilbert R, Gleghorn J Am J Physiol Lung Cell Mol Physiol. 2023; 324(4):L456-L467.

PMID: 36749917 PMC: 10042603. DOI: 10.1152/ajplung.00349.2022.

References
1.
Sullivan K, Hawgood S, Flake A, Harrison M, Adzick N . Amniotic fluid phospholipid analysis in the fetus with congenital diaphragmatic hernia. J Pediatr Surg. 1994; 29(8):1020-3; discussion 1023-4. DOI: 10.1016/0022-3468(94)90271-2. View

2.
Sluiter I, van der Horst I, van der Voorn P, Boerema-de Munck A, Buscop-van Kempen M, de Krijger R . Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia. Exp Mol Pathol. 2012; 94(1):195-202. DOI: 10.1016/j.yexmp.2012.09.010. View

3.
Liu A, Liu Y, Li B, Yang M, Liu Y, Su J . Role of miR-223-3p in pulmonary arterial hypertension via targeting ITGB3 in the ECM pathway. Cell Prolif. 2018; 52(2):e12550. PMC: 6496671. DOI: 10.1111/cpr.12550. View

4.
Mimmi M, Ballico M, Amoroso F, Calcaterra V, Marotta M, Peiro J . Phospholipid profile of amniotic fluid in ovine model of congenital diaphragmatic hernia (CDH): the effect of fetal tracheal occlusion. J Proteome Res. 2015; 14(3):1465-71. DOI: 10.1021/pr501120x. View

5.
Skarsgard E, Meuli M, VanderWall K, Bealer J, Adzick N, Harrison M . Fetal endoscopic tracheal occlusion ('Fetendo-PLUG') for congenital diaphragmatic hernia. J Pediatr Surg. 1996; 31(10):1335-8. DOI: 10.1016/s0022-3468(96)90823-4. View