» Articles » PMID: 35858340

Methanol Biotransformation Toward High-level Production of Fatty Acid Derivatives by Engineering the Industrial Yeast

Overview
Specialty Science
Date 2022 Jul 20
PMID 35858340
Authors
Affiliations
Soon will be listed here.
Abstract

Methanol-based biorefinery is a promising strategy to achieve carbon neutrality goals by linking CO capture and solar energy storage. As a typical methylotroph, shows great potential in methanol biotransformation. However, challenges still remain in engineering methanol metabolism for chemical overproduction. Here, we present the global rewiring of the central metabolism for efficient production of free fatty acids (FFAs; 23.4 g/L) from methanol, with an enhanced supply of precursors and cofactors, as well as decreased accumulation of formaldehyde. Finally, metabolic transforming of the fatty acid cell factory enabled overproduction of fatty alcohols (2.0 g/L) from methanol. This study demonstrated that global metabolic rewiring released the great potential of for methanol biotransformation toward chemical overproduction.

Citing Articles

Metabolic engineering of Komagataella phaffii for enhanced 3-hydroxypropionic acid (3-HP) production from methanol.

Avila-Cabre S, Albiol J, Ferrer P J Biol Eng. 2025; 19(1):19.

PMID: 39979934 PMC: 11844118. DOI: 10.1186/s13036-025-00488-x.


Development of a Komagataella phaffii cell factory for sustainable production of ( +)-valencene.

Cheng J, Chen J, Chen D, Li B, Wei C, Liu T Microb Cell Fact. 2025; 24(1):29.

PMID: 39838465 PMC: 11752624. DOI: 10.1186/s12934-025-02649-5.


A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts.

Meng X, Hu G, Li X, Gao C, Song W, Wei W Nat Commun. 2025; 16(1):31.

PMID: 39747058 PMC: 11695965. DOI: 10.1038/s41467-024-55502-5.


Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast.

Saha T, Kang N, Lee E J Biol Eng. 2024; 18(1):73.

PMID: 39731138 PMC: 11681767. DOI: 10.1186/s13036-024-00473-w.


Rational design and characterization of enhanced alcohol-inducible synthetic promoters in .

Liu Q, Li Y, Tao L, Yang J, Zhang Y, Cai M Appl Environ Microbiol. 2024; 91(1):e0219124.

PMID: 39699198 PMC: 11784102. DOI: 10.1128/aem.02191-24.


References
1.
Chuang D, Liao J . Role of cyanobacterial phosphoketolase in energy regulation and glucose secretion under dark anaerobic and osmotic stress conditions. Metab Eng. 2020; 65:255-262. DOI: 10.1016/j.ymben.2020.12.004. View

2.
Schwarzhans J, Luttermann T, Geier M, Kalinowski J, Friehs K . Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv. 2017; 35(6):681-710. DOI: 10.1016/j.biotechadv.2017.07.009. View

3.
Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J . Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng. 2020; 118(1):357-371. DOI: 10.1002/bit.27575. View

4.
Yu T, Zhou Y, Huang M, Liu Q, Pereira R, David F . Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell. 2018; 174(6):1549-1558.e14. DOI: 10.1016/j.cell.2018.07.013. View

5.
Lin-Cereghino G, Godfrey L, de la Cruz B, Johnson S, Khuongsathiene S, Tolstorukov I . Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris. Mol Cell Biol. 2006; 26(3):883-97. PMC: 1347016. DOI: 10.1128/MCB.26.3.883-897.2006. View