6.
Kim S, Sohn J, Koo J, Park S, Park H, Park B
. Molecular subtypes and tumor response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Oncology. 2011; 79(5-6):324-30.
DOI: 10.1159/000322192.
View
7.
Song J, Chen C, Yuan J, Sun S
. Progress in the clinical detection of heterogeneity in breast cancer. Cancer Med. 2016; 5(12):3475-3488.
PMC: 5224851.
DOI: 10.1002/cam4.943.
View
8.
Kong X, Moran M, Zhang N, Haffty B, Yang Q
. Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients. Eur J Cancer. 2011; 47(14):2084-90.
DOI: 10.1016/j.ejca.2011.06.014.
View
9.
Yafang L, Qiong W, Yue R, XiaoMing X, Lina Y, Mingzi Z
. Role of Estrogen Receptor-α in the Regulation of Claudin-6 Expression in Breast Cancer Cells. J Breast Cancer. 2011; 14(1):20-7.
PMC: 3148509.
DOI: 10.4048/jbc.2011.14.1.20.
View
10.
Xie L, Li X, Wang Q, Zhou J, Shen J, Luo L
. Effects of core needle biopsy and subsequent neoadjuvant chemotherapy on molecular alterations and outcome in breast cancer. Onco Targets Ther. 2018; 11:677-685.
PMC: 5798570.
DOI: 10.2147/OTT.S145715.
View
11.
Galli G, Bregni G, Cavalieri S, Porcu L, Baili P, Hade A
. Neoadjuvant Chemotherapy Exerts Selection Pressure Towards Luminal Phenotype Breast Cancer. Breast Care (Basel). 2018; 12(6):391-394.
PMC: 5803695.
DOI: 10.1159/000479582.
View
12.
Bonnefoi H, Litiere S, Piccart M, MacGrogan G, Fumoleau P, Brain E
. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial. Ann Oncol. 2014; 25(6):1128-36.
PMC: 4037859.
DOI: 10.1093/annonc/mdu118.
View
13.
Ding N, Liu C, Hu C, Yuan J, Liao W, Xiao Z
. Prognostic Factors for Luminal B-like Breast Cancer. Curr Med Sci. 2019; 39(3):396-402.
DOI: 10.1007/s11596-019-2049-8.
View
14.
Soleymani Abyaneh H, Gupta N, Alshareef A, Gopal K, Lavasanifar A, Lai R
. Hypoxia Induces the Acquisition of Cancer Stem-like Phenotype Via Upregulation and Activation of Signal Transducer and Activator of Transcription-3 (STAT3) in MDA-MB-231, a Triple Negative Breast Cancer Cell Line. Cancer Microenviron. 2018; 11(2-3):141-152.
PMC: 6250616.
DOI: 10.1007/s12307-018-0218-0.
View
15.
Bustreo S, Osella-Abate S, Cassoni P, Donadio M, Airoldi M, Pedani F
. Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: a large case series study with a long-term follow-up. Breast Cancer Res Treat. 2016; 157(2):363-371.
PMC: 4875067.
DOI: 10.1007/s10549-016-3817-9.
View
16.
Khokher S, Qureshi M, Chaudhry N
. Comparison of WHO and RECIST criteria for evaluation of clinical response to chemotherapy in patients with advanced breast cancer. Asian Pac J Cancer Prev. 2012; 13(7):3213-8.
DOI: 10.7314/apjcp.2012.13.7.3213.
View
17.
Ando Y, Ta H, Yen D, Lee S, Raola S, Shen K
. A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments. Sci Rep. 2017; 7(1):15233.
PMC: 5680268.
DOI: 10.1038/s41598-017-15583-3.
View
18.
Bonin S, Pracella D, Barbazza R, Dotti I, Boffo S, Stanta G
. PI3K/AKT Signaling in Breast Cancer Molecular Subtyping and Lymph Node Involvement. Dis Markers. 2019; 2019:7832376.
PMC: 6875411.
DOI: 10.1155/2019/7832376.
View
19.
Menendez J, Mehmi I, Papadimitropoulou A, Steen T, Cuyas E, Verdura S
. Fatty Acid Synthase Is a Key Enabler for Endocrine Resistance in Heregulin-Overexpressing Luminal B-Like Breast Cancer. Int J Mol Sci. 2020; 21(20).
PMC: 7588883.
DOI: 10.3390/ijms21207661.
View
20.
Fluegen G, Avivar-Valderas A, Wang Y, Padgen M, Williams J, Nobre A
. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol. 2017; 19(2):120-132.
PMC: 5342902.
DOI: 10.1038/ncb3465.
View