» Articles » PMID: 35835779

Fabrication of Triboelectric Polymer Films Via Repeated Rheological Forging for Ultrahigh Surface Charge Density

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jul 14
PMID 35835779
Authors
Affiliations
Soon will be listed here.
Abstract

Triboelectric polymer with high charge density is the foundation to promote the wide range of applications of triboelectric nanogenerators. This work develops a method to produce triboelectric polymer based on repeated rheological forging. The fluorinated ethylene propylene film fabricated by repeated forging method not only has excellent mechanical properties and good transmittance, but also can maintain an ultrahigh tribo-charge density. Based on the film with a thickness of 30 μm, the output charge density from contact-separation nanogenerator reaches 352 μC·m. Then, the same film is applied for the nanogenerator with air-breakdown mode and a charge density of 510 μC·m is further achieved. The repeated forging method can effectively regulate the composition of surface functional groups, the crystallinity, and the dielectric constants of the fluorinated ethylene propylene, leading to the superior capability of triboelectrification. Finally, we summarize the key parameters for elevating the electrification performance on the basis of molecular structure and related fabrication crafts, which can guide the further development of triboelectric polymers.

Citing Articles

Triboelectric sensor with ultra-wide linear range based on water-containing elastomer and ion-rich interface.

Qin S, Yang P, Liu Z, Hu J, Li N, Ding L Nat Commun. 2024; 15(1):10640.

PMID: 39643620 PMC: 11624205. DOI: 10.1038/s41467-024-54980-x.


Visualization and standardized quantification of surface charge density for triboelectric materials.

Li Y, Luo Y, Xiao S, Zhang C, Pan C, Zeng F Nat Commun. 2024; 15(1):6004.

PMID: 39019867 PMC: 11255240. DOI: 10.1038/s41467-024-49660-9.


Triboelectric Nanogenerator-Enabled Digital Twins in Civil Engineering Infrastructure 4.0: A Comprehensive Review.

Pang Y, He T, Liu S, Zhu X, Lee C Adv Sci (Weinh). 2024; 11(20):e2306574.

PMID: 38520068 PMC: 11132078. DOI: 10.1002/advs.202306574.


A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator.

Hu J, Iwamoto M, Chen X Nanomicro Lett. 2023; 16(1):7.

PMID: 37930592 PMC: 10628068. DOI: 10.1007/s40820-023-01238-8.


High Storable Power Density of Triboelectric Nanogenerator within Centimeter Size.

Shang Y, Li C, Yu G, Yang Y, Zhao W, Tang W Materials (Basel). 2023; 16(13).

PMID: 37444979 PMC: 10342295. DOI: 10.3390/ma16134669.


References
1.
Zou H, Zhang Y, Guo L, Wang P, He X, Dai G . Quantifying the triboelectric series. Nat Commun. 2019; 10(1):1427. PMC: 6441076. DOI: 10.1038/s41467-019-09461-x. View

2.
Wang S, Xie Y, Niu S, Lin L, Liu C, Zhou Y . Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv Mater. 2014; 26(39):6720-8. DOI: 10.1002/adma.201402491. View

3.
Tao K, Yi H, Yang Y, Tang L, Yang Z, Wu J . Miura-origami-inspired electret/triboelectric power generator for wearable energy harvesting with water-proof capability. Microsyst Nanoeng. 2021; 6:56. PMC: 8433327. DOI: 10.1038/s41378-020-0163-1. View

4.
Wang J, Wu C, Dai Y, Zhao Z, Wang A, Zhang T . Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun. 2017; 8(1):88. PMC: 5519710. DOI: 10.1038/s41467-017-00131-4. View

5.
Zhong J, Ma Y, Song Y, Zhong Q, Chu Y, Karakurt I . A Flexible Piezoelectret Actuator/Sensor Patch for Mechanical Human-Machine Interfaces. ACS Nano. 2019; 13(6):7107-7116. DOI: 10.1021/acsnano.9b02437. View