6.
Gissibl A, Sun A, Care A, Nevalainen H, Sunna A
. Bioproducts From : Synthesis and Applications. Front Bioeng Biotechnol. 2019; 7:108.
PMC: 6530250.
DOI: 10.3389/fbioe.2019.00108.
View
7.
Grimm P, Risse J, Cholewa D, Muller J, Beshay U, Friehs K
. Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion. J Biotechnol. 2015; 215:72-9.
DOI: 10.1016/j.jbiotec.2015.04.004.
View
8.
Hu C, Wang Q, Zhao H, Wang L, Guo S, Li X
. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere. 2015; 128:184-90.
DOI: 10.1016/j.chemosphere.2015.01.040.
View
9.
Kornberg H, KREBS H
. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957; 179(4568):988-91.
DOI: 10.1038/179988a0.
View
10.
Maloy S, Nunn W
. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J Bacteriol. 1982; 149(1):173-80.
PMC: 216607.
DOI: 10.1128/jb.149.1.173-180.1982.
View
11.
Mashego M, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen J
. Microbial metabolomics: past, present and future methodologies. Biotechnol Lett. 2006; 29(1):1-16.
DOI: 10.1007/s10529-006-9218-0.
View
12.
Matsuda F, Hayashi M, Kondo A
. Comparative profiling analysis of central metabolites in Euglena gracilis under various cultivation conditions. Biosci Biotechnol Biochem. 2011; 75(11):2253-6.
DOI: 10.1271/bbb.110482.
View
13.
Mishra A, Medhi K, Malaviya P, Thakur I
. Omics approaches for microalgal applications: Prospects and challenges. Bioresour Technol. 2019; 291:121890.
DOI: 10.1016/j.biortech.2019.121890.
View
14.
Rodriguez-Zavala J, Ortiz-Cruz M, Mendoza-Hernandez G, Moreno-Sanchez R
. Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol. 2010; 109(6):2160-72.
DOI: 10.1111/j.1365-2672.2010.04848.x.
View
15.
Stirbet A, Govindjee
. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B. 2011; 104(1-2):236-57.
DOI: 10.1016/j.jphotobiol.2010.12.010.
View
16.
Sun C, Xu Y, Hu N, Ma J, Sun S, Cao W
. To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere. 2019; 244:125514.
DOI: 10.1016/j.chemosphere.2019.125514.
View
17.
Sun L, Sun S, Bai M, Wang Z, Zhao Y, Huang Q
. Internalization of polystyrene microplastics in Euglena gracilis and its effects on the protozoan photosynthesis and motility. Aquat Toxicol. 2021; 236:105840.
DOI: 10.1016/j.aquatox.2021.105840.
View
18.
Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T
. Production of antioxidant vitamins, beta-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng. 1997; 53(2):185-90.
DOI: 10.1002/(SICI)1097-0290(19970120)53:2<185::AID-BIT8>3.0.CO;2-K.
View
19.
Wang Y, Seppanen-Laakso T, Rischer H, Wiebe M
. Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One. 2018; 13(4):e0195329.
PMC: 5896972.
DOI: 10.1371/journal.pone.0195329.
View
20.
Yaakob M, Mohamed R, Al-Gheethi A, Aswathnarayana Gokare R, Ambati R
. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview. Cells. 2021; 10(2).
PMC: 7918059.
DOI: 10.3390/cells10020393.
View