» Articles » PMID: 35806312

Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 Jul 9
PMID 35806312
Authors
Affiliations
Soon will be listed here.
Abstract

Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood-brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.

Citing Articles

Endothelial TRPV4/Cx43 Signaling Complex Regulates Vasomotor Tone in Resistance Arteries.

Burboa P, Gaete P, Shu P, Araujo P, Beuve A, Duran W bioRxiv. 2024; .

PMID: 39091840 PMC: 11291137. DOI: 10.1101/2024.07.25.604930.


Impact of Matrix Gel Variations on Primary Culture of Microvascular Endothelial Cell Function.

Burboa P, Correa-Velloso J, Arriagada C, Thomas A, Duran W, Lillo M Microcirculation. 2024; 31(5):e12859.

PMID: 38818977 PMC: 11227414. DOI: 10.1111/micc.12859.


The role of enhanced expression of Cx43 in patients with ulcerative colitis.

Liu W, Feng Y, Li T, Shi T, Hui W, Liu H Open Med (Wars). 2024; 19(1):20230885.

PMID: 38770177 PMC: 11103162. DOI: 10.1515/med-2023-0885.


Pannexins in the musculoskeletal system: new targets for development and disease progression.

Luo Y, Zheng S, Xiao W, Zhang H, Li Y Bone Res. 2024; 12(1):26.

PMID: 38705887 PMC: 11070431. DOI: 10.1038/s41413-024-00334-8.


Pannexin1: insight into inflammatory conditions and its potential involvement in multiple organ dysfunction syndrome.

Chen X, Yuan S, Mi L, Long Y, He H Front Immunol. 2023; 14:1217366.

PMID: 37711629 PMC: 10498923. DOI: 10.3389/fimmu.2023.1217366.

References
1.
Moller S, Brings Jacobsen J, Holstein-Rathlou N, Sorensen C . Lack of Connexins 40 and 45 Reduces Local and Conducted Vasoconstrictor Responses in the Murine Afferent Arterioles. Front Physiol. 2020; 11:961. PMC: 7431600. DOI: 10.3389/fphys.2020.00961. View

2.
Lourenco C, Laranjinha J . Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow. Front Physiol. 2021; 12:729201. PMC: 8569710. DOI: 10.3389/fphys.2021.729201. View

3.
Myers J, Haddad B, ONeill S, Chorev D, Yoshioka C, Robinson C . Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Nature. 2018; 564(7736):372-377. PMC: 6309215. DOI: 10.1038/s41586-018-0786-7. View

4.
Yamaguchi D, Ma D . Mechanism of pH regulation of connexin 43 expression in MC3T3-E1 cells. Biochem Biophys Res Commun. 2003; 304(4):736-9. DOI: 10.1016/s0006-291x(03)00633-8. View

5.
Good M, Chiu Y, Poon I, Medina C, Butcher J, Mendu S . Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circ Res. 2017; 122(4):606-615. PMC: 5815904. DOI: 10.1161/CIRCRESAHA.117.312380. View