» Articles » PMID: 35794110

Deep Learning from Phylogenies to Uncover the Epidemiological Dynamics of Outbreaks

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jul 6
PMID 35794110
Authors
Affiliations
Soon will be listed here.
Abstract

Widely applicable, accurate and fast inference methods in phylodynamics are needed to fully profit from the richness of genetic data in uncovering the dynamics of epidemics. Standard methods, including maximum-likelihood and Bayesian approaches, generally rely on complex mathematical formulae and approximations, and do not scale with dataset size. We develop a likelihood-free, simulation-based approach, which combines deep learning with (1) a large set of summary statistics measured on phylogenies or (2) a complete and compact representation of trees, which avoids potential limitations of summary statistics and applies to any phylodynamics model. Our method enables both model selection and estimation of epidemiological parameters from very large phylogenies. We demonstrate its speed and accuracy on simulated data, where it performs better than the state-of-the-art methods. To illustrate its applicability, we assess the dynamics induced by superspreading individuals in an HIV dataset of men-having-sex-with-men in Zurich. Our tool PhyloDeep is available on github.com/evolbioinfo/phylodeep .

Citing Articles

Evolutionary and epidemic dynamics of COVID-19 in Germany exemplified by three Bayesian phylodynamic case studies.

Oversti S, Weber A, Baran V, Kieninger B, Dilthey A, Houwaart T Bioinform Biol Insights. 2025; 19:11779322251321065.

PMID: 40078196 PMC: 11898094. DOI: 10.1177/11779322251321065.


A vector representation for phylogenetic trees.

Chauve C, Colijn C, Zhang L Philos Trans R Soc Lond B Biol Sci. 2025; 380(1919):20240226.

PMID: 39976399 PMC: 11867187. DOI: 10.1098/rstb.2024.0226.


Artificial intelligence for modelling infectious disease epidemics.

Kraemer M, Tsui J, Chang S, Lytras S, Khurana M, Vanderslott S Nature. 2025; 638(8051):623-635.

PMID: 39972226 DOI: 10.1038/s41586-024-08564-w.


TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution.

Lozano J, Duncan M, McKenna D, Castoe T, DeGiorgio M, Adams R Bioinform Adv. 2025; 5(1):vbae196.

PMID: 39758830 PMC: 11696700. DOI: 10.1093/bioadv/vbae196.


Unsupervised learning analysis on the proteomes of Zika virus.

Lara-Ramirez E, Rivera G, Oliva-Hernandez A, Bocanegra-Garcia V, Lopez J, Guo X PeerJ Comput Sci. 2024; 10:e2443.

PMID: 39650519 PMC: 11623125. DOI: 10.7717/peerj-cs.2443.


References
1.
Kouyos R, von Wyl V, Yerly S, Boni J, Taffe P, Shah C . Molecular epidemiology reveals long-term changes in HIV type 1 subtype B transmission in Switzerland. J Infect Dis. 2010; 201(10):1488-97. DOI: 10.1086/651951. View

2.
Stadler T, Kuhnert D, Rasmussen D, du Plessis L . Insights into the early epidemic spread of ebola in sierra leone provided by viral sequence data. PLoS Curr. 2015; 6. PMC: 4205153. DOI: 10.1371/currents.outbreaks.02bc6d927ecee7bbd33532ec8ba6a25f. View

3.
To T, Jung M, Lycett S, Gascuel O . Fast Dating Using Least-Squares Criteria and Algorithms. Syst Biol. 2015; 65(1):82-97. PMC: 4678253. DOI: 10.1093/sysbio/syv068. View

4.
Brenner B, Roger M, Routy J, Moisi D, Ntemgwa M, Matte C . High rates of forward transmission events after acute/early HIV-1 infection. J Infect Dis. 2007; 195(7):951-9. DOI: 10.1086/512088. View

5.
Boskova V, Stadler T, Magnus C . The influence of phylodynamic model specifications on parameter estimates of the Zika virus epidemic. Virus Evol. 2018; 4(1):vex044. PMC: 5789282. DOI: 10.1093/ve/vex044. View