» Articles » PMID: 35784653

Microscopy-based Single-cell Proteomic Profiling Reveals Heterogeneity in DNA Damage Response Dynamics

Overview
Specialty Cell Biology
Date 2022 Jul 5
PMID 35784653
Authors
Affiliations
Soon will be listed here.
Abstract

Single-cell proteomics has the potential to decipher tumor heterogeneity, and a method like single-cell proteomics by mass spectrometry (SCoPE-MS) allows profiling several tens of single cells for >1,000 proteins per cell. This method, however, cannot link the proteome of individual cells with phenotypes of interest. Here, we developed a microscopy-based functional single-cell proteomic-profiling technology, called FUNpro, to address this. FUNpro enables screening, identification, and isolation of single cells of interest in a real-time fashion, even if the phenotypes are dynamic or the cells of interest are rare. We applied FUNpro to proteomically profile a newly identified small subpopulation of U2OS osteosarcoma cells displaying an abnormal, prolonged DNA damage response (DDR) after ionizing radiation (IR). With this, we identified the PDS5A protein contributing to the abnormal DDR dynamics and helping the cells survive after IR.

Citing Articles

Functional Single-Cell Proteomics: Technology and Biological Applications.

Su P, Chien M Methods Mol Biol. 2025; 2902:145-159.

PMID: 40029601 DOI: 10.1007/978-1-0716-4402-7_9.


Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment.

Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B Genes Dis. 2024; 12(1):101239.

PMID: 39552788 PMC: 11566696. DOI: 10.1016/j.gendis.2024.101239.


Instant processing of large-scale image data with FACT, a real-time cell segmentation and tracking algorithm.

Chou T, You L, Beerens C, Feller K, Storteboom J, Chien M Cell Rep Methods. 2023; 3(11):100636.

PMID: 37963463 PMC: 10694492. DOI: 10.1016/j.crmeth.2023.100636.


Bridging live-cell imaging and next-generation cancer treatment.

Alieva M, Wezenaar A, Wehrens E, Rios A Nat Rev Cancer. 2023; 23(11):731-745.

PMID: 37704740 DOI: 10.1038/s41568-023-00610-5.


Spatial Transcriptomic Technologies.

Chen T, You L, Hardillo J, Chien M Cells. 2023; 12(16).

PMID: 37626852 PMC: 10453065. DOI: 10.3390/cells12162042.


References
1.
Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S . Intelligent Image-Activated Cell Sorting. Cell. 2018; 175(1):266-276.e13. DOI: 10.1016/j.cell.2018.08.028. View

2.
Cong Y, Liang Y, Motamedchaboki K, Huguet R, Truong T, Zhao R . Improved Single-Cell Proteome Coverage Using Narrow-Bore Packed NanoLC Columns and Ultrasensitive Mass Spectrometry. Anal Chem. 2020; 92(3):2665-2671. PMC: 7550239. DOI: 10.1021/acs.analchem.9b04631. View

3.
Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N . Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015; 525(7568):251-5. DOI: 10.1038/nature14966. View

4.
Ruusuvuori P, Aijo T, Chowdhury S, Garmendia-Torres C, Selinummi J, Birbaumer M . Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images. BMC Bioinformatics. 2010; 11:248. PMC: 3098061. DOI: 10.1186/1471-2105-11-248. View

5.
Kolodziejczyk A, Kim J, Svensson V, Marioni J, Teichmann S . The technology and biology of single-cell RNA sequencing. Mol Cell. 2015; 58(4):610-20. DOI: 10.1016/j.molcel.2015.04.005. View