» Articles » PMID: 35780654

The Chemical Biology of NAD Regulation in Axon Degeneration

Overview
Publisher Elsevier
Specialty Biochemistry
Date 2022 Jul 3
PMID 35780654
Authors
Affiliations
Soon will be listed here.
Abstract

During axon degeneration, NAD levels are largely controlled by two enzymes: nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and toll interleukin motif containing protein 1 (SARM1). NMNAT2, which catalyzes the formation of NAD from NMN and ATP, is actively degraded leading to decreased NAD levels. SARM1 activity further decreases the concentration of NAD by catalyzing its hydrolysis to form nicotinamide and a mixture of ADPR and cADPR. Notably, SARM1 knockout mice show decreased neurodegeneration in animal models of axon degeneration, highlighting the therapeutic potential of targeting this novel NAD hydrolase. This review discusses recent advances in the SARM1 field, including SARM1 structure, regulation, and catalysis as well as the identification of the first SARM1 inhibitors.

Citing Articles

Lyssavirus M protein degrades neuronal microtubules by reprogramming mitochondrial metabolism.

Yuan Y, Fang A, Wang H, Wang C, Sui B, Zhao J mBio. 2024; 15(3):e0288023.

PMID: 38349129 PMC: 10936203. DOI: 10.1128/mbio.02880-23.


Loss of Sarm1 reduces retinal ganglion cell loss in chronic glaucoma.

Zeng H, Mayberry J, Wadkins D, Chen N, Summers D, Kuehn M Acta Neuropathol Commun. 2024; 12(1):23.

PMID: 38331947 PMC: 10854189. DOI: 10.1186/s40478-024-01736-9.


Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury.

Dogan E, Bouley J, Zhong J, Harkins A, Keeler A, Bosco D Acta Neuropathol Commun. 2023; 11(1):206.

PMID: 38124145 PMC: 10731794. DOI: 10.1186/s40478-023-01709-4.


NAD, Axonal Maintenance, and Neurological Disease.

Alexandris A, Koliatsos V Antioxid Redox Signal. 2023; 39(16-18):1167-1184.

PMID: 37503611 PMC: 10715442. DOI: 10.1089/ars.2023.0350.


NAD metabolism: Role in senescence regulation and aging.

Chini C, Cordeiro H, Tran N, Chini E Aging Cell. 2023; 23(1):e13920.

PMID: 37424179 PMC: 10776128. DOI: 10.1111/acel.13920.


References
1.
Sporny M, Guez-Haddad J, Lebendiker M, Ulisse V, Volf A, Mim C . Structural Evidence for an Octameric Ring Arrangement of SARM1. J Mol Biol. 2019; 431(19):3591-3605. DOI: 10.1016/j.jmb.2019.06.030. View

2.
Calcraft P, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X . NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature. 2009; 459(7246):596-600. PMC: 2761823. DOI: 10.1038/nature08030. View

3.
Hughes R, Bosanac T, Mao X, Engber T, DiAntonio A, Milbrandt J . Small Molecule SARM1 Inhibitors Recapitulate the SARM1 Phenotype and Allow Recovery of a Metastable Pool of Axons Fated to Degenerate. Cell Rep. 2021; 34(1):108588. PMC: 8179325. DOI: 10.1016/j.celrep.2020.108588. View

4.
Figley M, Gu W, Nanson J, Shi Y, Sasaki Y, Cunnea K . SARM1 is a metabolic sensor activated by an increased NMN/NAD ratio to trigger axon degeneration. Neuron. 2021; 109(7):1118-1136.e11. PMC: 8174188. DOI: 10.1016/j.neuron.2021.02.009. View

5.
Cheng Y, Liu J, Luan Y, Liu Z, Lai H, Zhong W . Gene Deficiency Attenuates Diabetic Peripheral Neuropathy in Mice. Diabetes. 2019; 68(11):2120-2130. PMC: 6804630. DOI: 10.2337/db18-1233. View