» Articles » PMID: 35776907

Solid-State NMR Reveals Asymmetric ATP Hydrolysis in the Multidrug ABC Transporter BmrA

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2022 Jul 1
PMID 35776907
Authors
Affiliations
Soon will be listed here.
Abstract

The detailed mechanism of ATP hydrolysis in ATP-binding cassette (ABC) transporters is still not fully understood. Here, we employed P solid-state NMR to probe the conformational changes and dynamics during the catalytic cycle by locking the multidrug ABC transporter BmrA in prehydrolytic, transition, and posthydrolytic states, using a combination of mutants and ATP analogues. The P spectra reveal that ATP binds strongly in the prehydrolytic state to both ATP-binding sites as inferred from the analysis of the nonhydrolytic E504A mutant. In the transition state of wild-type BmrA, the symmetry of the dimer is broken and only a single site is tightly bound to ADP:Mg:vanadate, while the second site is more 'open' allowing exchange with the nucleotides in the solvent. In the posthydrolytic state, weak binding, as characterized by chemical exchange with free ADP and by asymmetric P-P two-dimensional (2D) correlation spectra, is observed for both sites. Revisiting the C spectra in light of these findings confirms the conformational nonequivalence of the two nucleotide-binding sites in the transition state. Our results show that following ATP binding, the symmetry of the ATP-binding sites of BmrA is lost in the ATP-hydrolysis step, but is then recovered in the posthydrolytic ADP-bound state.

Citing Articles

Rhodamine6G and Hœchst33342 narrow BmrA conformational spectrum for a more efficient use of ATP.

Gobet A, Moissonnier L, Zarkadas E, Magnard S, Bettler E, Martin J Nat Commun. 2025; 16(1):1745.

PMID: 39966360 PMC: 11836358. DOI: 10.1038/s41467-025-56849-z.


The C-terminal α-helix is crucial for the activity of the bacterial ABC transporter BmrA.

Osten V, Oepen K, Schneider D J Biol Chem. 2024; 301(2):108098.

PMID: 39706270 PMC: 11774805. DOI: 10.1016/j.jbc.2024.108098.


Systematic QM/MM Study for Predicting P NMR Chemical Shifts of Adenosine Nucleotides in Solution and Stages of ATP Hydrolysis in a Protein Environment.

Szanto J, Dietschreit J, Shein M, Schutz A, Ochsenfeld C J Chem Theory Comput. 2024; 20(6):2433-2444.

PMID: 38497488 PMC: 10976643. DOI: 10.1021/acs.jctc.3c01280.


Probing the allosteric NBD-TMD crosstalk in the ABC transporter MsbA by solid-state NMR.

Novischi S, Karoly-Lakatos A, Chok K, Bonifer C, Becker-Baldus J, Glaubitz C Commun Biol. 2024; 7(1):43.

PMID: 38182790 PMC: 10770068. DOI: 10.1038/s42003-023-05617-0.


The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains.

Di Cesare M, Kaplan E, Rendon J, Gerbaud G, Valimehr S, Gobet A J Biol Chem. 2023; 300(1):105546.

PMID: 38072053 PMC: 10821409. DOI: 10.1016/j.jbc.2023.105546.


References
1.
Asami S, Reif B . Accessing Methyl Groups in Proteins via H-detected MAS Solid-state NMR Spectroscopy Employing Random Protonation. Sci Rep. 2019; 9(1):15903. PMC: 6828780. DOI: 10.1038/s41598-019-52383-3. View

2.
Steinfels E, Orelle C, Fantino J, Dalmas O, Rigaud J, Denizot F . Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry. 2004; 43(23):7491-502. DOI: 10.1021/bi0362018. View

3.
Kerr I . Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim Biophys Acta. 2002; 1561(1):47-64. DOI: 10.1016/s0304-4157(01)00008-9. View

4.
Thomas C, Tampe R . Structural and Mechanistic Principles of ABC Transporters. Annu Rev Biochem. 2020; 89:605-636. DOI: 10.1146/annurev-biochem-011520-105201. View

5.
Ward A, Reyes C, Yu J, Roth C, Chang G . Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci U S A. 2007; 104(48):19005-10. PMC: 2141898. DOI: 10.1073/pnas.0709388104. View