» Articles » PMID: 35775611

Recent Developments in the Use of Gold and Silver Nanoparticles in Biomedicine

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Gold and silver nanoparticles (NPs) are widely used in the biomedical research both in the therapeutic and the sensing/diagnostics fronts. Both metals share some common optical properties with surface plasmon resonance being the most widely exploited property in therapeutics and diagnostics. Au NPs exhibit excellent light-to-heat conversion efficiencies and hence have found applications primarily in precision oncology, while Ag NPs have excellent antibacterial properties which can be harnessed in biomaterials' design. Both metals constitute excellent biosensing platforms owing to their plasmonic properties and are now routinely used in various optical platforms. The utilization of Au and Ag NPs in the COVID-19 pandemic was rapidly expanded mostly in biosensing and point-of-care platforms and to some extent in therapeutics. In this review article, the main physicochemical properties of Au and Ag NPs are discussed with selective examples from the recent literature. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.

Citing Articles

Gold nanoparticles as innovative therapeutics for oral mucositis: A review of current evidence.

Choudhury M, Brunton P, Dias G, Schwass D, Meledandri C, Ratnayake J Drug Deliv Transl Res. 2024; .

PMID: 39625578 DOI: 10.1007/s13346-024-01748-x.


Capped Plasmonic Gold and Silver Nanoparticles with Porphyrins for Potential Use as Anticancer Agents-A Review.

Hlapisi N, Songca S, Ajibade P Pharmaceutics. 2024; 16(10).

PMID: 39458600 PMC: 11510308. DOI: 10.3390/pharmaceutics16101268.


Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development.

Ershov V, Ershov B Toxics. 2024; 12(10).

PMID: 39453177 PMC: 11510811. DOI: 10.3390/toxics12100757.


Visualizing Macrophage Polarization through Fluorescent mRNA Profiling.

Xu M, Wei S, Su T, Ma D, Wang Z, Zhu D Biosensors (Basel). 2024; 14(10).

PMID: 39451688 PMC: 11506351. DOI: 10.3390/bios14100475.


Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles.

Abdel-Fatah S, Mohammad N, Elshimy R, Mosallam F Microb Cell Fact. 2024; 23(1):240.

PMID: 39238019 PMC: 11378559. DOI: 10.1186/s12934-024-02508-9.


References
1.
Alafeef M, Dighe K, Moitra P, Pan D . Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano. 2020; 14(12):17028-17045. DOI: 10.1021/acsnano.0c06392. View

2.
S Jeremiah S, Miyakawa K, Morita T, Yamaoka Y, Ryo A . Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun. 2020; 533(1):195-200. PMC: 7486059. DOI: 10.1016/j.bbrc.2020.09.018. View

3.
Tapio K, Mostafa A, Kanehira Y, Suma A, Dutta A, Bald I . A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy. ACS Nano. 2021; 15(4):7065-7077. PMC: 8155336. DOI: 10.1021/acsnano.1c00188. View

4.
Yang Y, Waterhouse G, Chen Y, Sun-Waterhouse D, Li D . Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv. 2022; 55:107914. DOI: 10.1016/j.biotechadv.2022.107914. View

5.
Dang M, Casas C, Day E . Photoresponsive miR-34a/Nanoshell Conjugates Enable Light-Triggered Gene Regulation to Impair the Function of Triple-Negative Breast Cancer Cells. Nano Lett. 2020; 21(1):68-76. PMC: 7855941. DOI: 10.1021/acs.nanolett.0c03152. View