» Articles » PMID: 35769696

A Deep Learning Model for Three-Dimensional Nystagmus Detection and Its Preliminary Application

Overview
Journal Front Neurosci
Date 2022 Jun 30
PMID 35769696
Authors
Affiliations
Soon will be listed here.
Abstract

Symptoms of vertigo are frequently reported and are usually accompanied by eye-movements called nystagmus. In this article, we designed a three-dimensional nystagmus recognition model and a benign paroxysmal positional vertigo automatic diagnosis system based on deep neural network architectures (Chinese Clinical Trials Registry ChiCTR-IOR-17010506). An object detection model was constructed to track the movement of the pupil centre. Convolutional neural network-based models were trained to detect nystagmus patterns in three dimensions. Our nystagmus detection models obtained high areas under the curve; 0.982 in horizontal tests, 0.893 in vertical tests, and 0.957 in torsional tests. Moreover, our automatic benign paroxysmal positional vertigo diagnosis system achieved a sensitivity of 0.8848, specificity of 0.8841, accuracy of 0.8845, and an F1 score of 0.8914. Compared with previous studies, our system provides a clinical reference, facilitates nystagmus detection and diagnosis, and it can be applied in real-world medical practices.

Citing Articles

Neurological update: neuro-otology 2023.

Halmagyi G, Akdal G, Welgampola M, Wang C J Neurol. 2023; 270(12):6170-6192.

PMID: 37592138 PMC: 10632253. DOI: 10.1007/s00415-023-11922-9.


Torsional nystagmus recognition based on deep learning for vertigo diagnosis.

Li H, Yang Z Front Neurosci. 2023; 17:1160904.

PMID: 37360163 PMC: 10288185. DOI: 10.3389/fnins.2023.1160904.


3D shape reconstruction with a multiple-constraint estimation approach.

Chen X, Sun Z, Zhang Y Front Neurosci. 2023; 17:1191574.

PMID: 37274221 PMC: 10235535. DOI: 10.3389/fnins.2023.1191574.


Diagnosing the benign paroxysmal positional vertigo via 1D and deep-learning composite model.

Wu P, Liu X, Dai Q, Yu J, Zhao J, Yu F J Neurol. 2023; 270(8):3800-3809.

PMID: 37076600 DOI: 10.1007/s00415-023-11662-w.


Vertical Nystagmus Recognition Based on Deep Learning.

Li H, Yang Z Sensors (Basel). 2023; 23(3).

PMID: 36772631 PMC: 9920786. DOI: 10.3390/s23031592.

References
1.
Pudszuhn A, Heinzelmann A, Schonfeld U, Niehues S, Hofmann V . [Acute vestibular syndrome in emergency departments : Clinical differentiation of peripheral and central vestibulopathy]. HNO. 2019; 68(5):367-378. DOI: 10.1007/s00106-019-0721-8. View

2.
Neuhauser H . The epidemiology of dizziness and vertigo. Handb Clin Neurol. 2016; 137:67-82. DOI: 10.1016/B978-0-444-63437-5.00005-4. View

3.
Eggert T . Eye movement recordings: methods. Dev Ophthalmol. 2007; 40:15-34. DOI: 10.1159/000100347. View

4.
Maarsingh O, Dros J, Schellevis F, van Weert H, Bindels P, van der Horst H . Dizziness reported by elderly patients in family practice: prevalence, incidence, and clinical characteristics. BMC Fam Pract. 2010; 11:2. PMC: 2817676. DOI: 10.1186/1471-2296-11-2. View

5.
Yao Q, Wang H, Song Q, Shi H, Yu D . Use of the Bárány Society criteria to diagnose benign paroxysmal positional vertigo. J Vestib Res. 2019; 28(5-6):379-384. DOI: 10.3233/VES-190648. View