» Articles » PMID: 35765984

Cerebral Ischemia in the Developing Brain

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Brain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults. Here, we consider the timing of injury in terms of excitation/inhibition balance, oxidative stress, inflammatory responses, blood brain barrier integrity, and white matter injury. Finally, we review translational strategies to improve function after ischemic brain injury, including new ideas regarding neurorestoration, or neural repair strategies that restore plasticity, at delayed time points after ischemia.

Citing Articles

Cynaroside: a potential therapeutic agent targeting arachidonate 15-lipoxygenase to mitigate cerebral ischemia/reperfusion injury.

Cao W, Hu Y, Yu X, Long T, Sun B, Lei S Front Neurol. 2025; 15:1490640.

PMID: 40026597 PMC: 11867947. DOI: 10.3389/fneur.2024.1490640.


Isoliquiritigenin alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the Nrf2 pathway.

Lan X, Wang Q, Liu Y, You Q, Wei W, Zhu C Redox Biol. 2024; 77:103406.

PMID: 39454290 PMC: 11546133. DOI: 10.1016/j.redox.2024.103406.


Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases.

Liu J, Zhao F, Qu Y Biomolecules. 2024; 14(9).

PMID: 39334941 PMC: 11430557. DOI: 10.3390/biom14091175.


Neuroprotective effect and preparation methods of berberine.

Sunhe Y, Zhang Y, Fu R, Xu D, Tang Y Front Pharmacol. 2024; 15:1429050.

PMID: 39309003 PMC: 11412855. DOI: 10.3389/fphar.2024.1429050.


Neuroprotective effect of ischemic postconditioning against hyperperfusion and its mechanisms of neuroprotection.

Bagheri S, Allahtavakoli M, Hakimizadeh E J Res Med Sci. 2024; 29:31.

PMID: 39239075 PMC: 11376715. DOI: 10.4103/jrms.jrms_341_22.


References
1.
Villapol S, Fau S, Renolleau S, Biran V, Charriaut-Marlangue C, Baud O . Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr Res. 2010; 69(1):51-5. DOI: 10.1203/PDR.0b013e3181fcb40b. View

2.
Faustino J, Wang X, Johnson C, Klibanov A, Derugin N, Wendland M . Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci. 2011; 31(36):12992-3001. PMC: 3539822. DOI: 10.1523/JNEUROSCI.2102-11.2011. View

3.
Winerdal M, Winerdal M, Kinn J, Urmaliya V, Winqvist O, Aden U . Long lasting local and systemic inflammation after cerebral hypoxic ischemia in newborn mice. PLoS One. 2012; 7(5):e36422. PMC: 3342175. DOI: 10.1371/journal.pone.0036422. View

4.
Herson P, Traystman R . Animal models of stroke: translational potential at present and in 2050. Future Neurol. 2014; 9(5):541-551. PMC: 4266275. DOI: 10.2217/fnl.14.44. View

5.
Westmacott R, MacGregor D, Askalan R, deVeber G . Late emergence of cognitive deficits after unilateral neonatal stroke. Stroke. 2009; 40(6):2012-9. DOI: 10.1161/STROKEAHA.108.533976. View