» Articles » PMID: 35757794

Multifunctional Smart Bone Implants: Fiction or Future?-A New Perspective

Overview
Date 2022 Jun 27
PMID 35757794
Authors
Affiliations
Soon will be listed here.
Abstract

Implantable medical devices have been developed to provide multifunctional ability to numerous bioapplications. In the scope of orthopaedics, four methodologies were already proposed to design implant technologies: non-instrumented passive implants, non-instrumented active implants, instrumented passive implants and instrumented active implants. Even though bone replacements are among the most performed surgeries worldwide, implant failure rates can still exceed 10%. Controversial positions multiply in the scientific community about the potential of each methodology to minimize the burden related to implant failures. In this perspective paper, we argue that the next technological revolution in the field of implantable bone devices will most likely emerge with instrumented active implants as multifunctional smart devices extracorporeally controlled by clinicians/surgeons. Moreover, we provide a new perspective about implant technology: the essence of instrumented implants is to enclose a hybrid architecture in which optimal implant performances require both smart instrumentation and smart coatings, although the implant controllability must be ensured by extracorporeal systems.

Citing Articles

A millimetre-scale capacitive biosensing and biophysical stimulation system for emerging bioelectronic bone implants.

Pires D, Silva N, de Sousa B, Marques J, Ramos A, Ferreira J J R Soc Interface. 2024; 21(218):20240279.

PMID: 39257282 PMC: 11463222. DOI: 10.1098/rsif.2024.0279.


Self-adaptive rotational electromagnetic energy generation as an alternative to triboelectric and piezoelectric transductions.

Rolo P, Vidal J, Kholkin A, Santos M Commun Eng. 2024; 3(1):105.

PMID: 39085411 PMC: 11291956. DOI: 10.1038/s44172-024-00249-6.


Sensor Technology in Fracture Healing.

Jeyaraman M, Jayakumar T, Jeyaraman N, Nallakumarasamy A Indian J Orthop. 2023; 57(8):1196-1202.

PMID: 37525725 PMC: 10386990. DOI: 10.1007/s43465-023-00933-3.


Best practice in digital orthopaedics.

Halm-Pozniak A, Lohmann C, Zagra L, Braun B, Gordon M, Grimm B EFORT Open Rev. 2023; 8(5):283-290.

PMID: 37158429 PMC: 10233806. DOI: 10.1530/EOR-23-0081.


Bioelectronic multifunctional bone implants: recent trends.

Santos M, Bernardo R Bioelectron Med. 2022; 8(1):15.

PMID: 36127721 PMC: 9490885. DOI: 10.1186/s42234-022-00097-9.

References
1.
Santos M, Bernardo R, Henriques L, Ramos A, Ferreira J, Furlani E . Towards an effective sensing technology to monitor micro-scale interface loosening of bioelectronic implants. Sci Rep. 2021; 11(1):3449. PMC: 7876021. DOI: 10.1038/s41598-021-82589-3. View

2.
Sumner D . Long-term implant fixation and stress-shielding in total hip replacement. J Biomech. 2015; 48(5):797-800. DOI: 10.1016/j.jbiomech.2014.12.021. View

3.
Santos M, Ferreira J, Simoes J, Pascoal R, Torrao J, Xue X . Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction. Sci Rep. 2016; 6:18579. PMC: 4698582. DOI: 10.1038/srep18579. View

4.
Peres I, Rolo P, Ferreira J, Pinto S, Marques P, Ramos A . Multiscale Sensing of Bone-Implant Loosening for Multifunctional Smart Bone Implants: Using Capacitive Technologies for Precision Controllability. Sensors (Basel). 2022; 22(7). PMC: 9003018. DOI: 10.3390/s22072531. View

5.
Santos M, Marote A, Santos T, Torrao J, Ramos A, Simoes J . New cosurface capacitive stimulators for the development of active osseointegrative implantable devices. Sci Rep. 2016; 6:30231. PMC: 4960616. DOI: 10.1038/srep30231. View