» Articles » PMID: 35752856

Autophagy Responsive Intra-intercellular Delivery Nanoparticles for Effective Deep Solid Tumor Penetration

Overview
Publisher Biomed Central
Specialty Biotechnology
Date 2022 Jun 25
PMID 35752856
Authors
Affiliations
Soon will be listed here.
Abstract

Deep tumor cells (cells in the center of solid tumors) play a crucial role in drug tolerance, metastasis, recurrence and microenvironment immune suppression. However, their deep location endows them with an untouched abdomen and makes them refractory to current treatments. Herein, we exploited the characteristic of higher autophagy in deep tumor cells than in superficial tumor cells and designed autophagy-responsive multifunctional nanoparticles (PGN) to enhance drug accumulation in deep tumor cells. PGNs were prepared by densely coating poly (lactic-co-glycolic acid) (PLGA) with cationic autophagy-responsive cell-penetrating peptide (GR9) and anionic 2,3-dimethylmaleic anhydride (DMA)-modified DSPE-PEG. The suitable nanoparticle size (122.4 nm) and charge-neutral surface (0.21 mV) of the NPs enabled long blood circulation. The hydrolysis of surface-anchored anionic DMA in the acidic microenvironment led to the exposure of the GR9 peptide and enhance tumor penetration. Once the PGN arrived in deep tumor cells with strong autophagy, GR9 was cut off by an autophagy shear enzyme, and the nanoparticles remained in the cells to undergo degradation. Furthermore, we prepared docetaxel (DTX) and chloroquine (CQ) loaded d-PGN. CQ inhibits autophagosome fusion with lysosomes, resulting in autophagosome accumulation, which further enhances the sensitivity of d-PGN to autophagy and their deep tumor retention. In vivo experiments showed that drug-loaded d-PGN achieved excellent antitumor efficacy with a peak inhibition rate of 82.1%. In conclusion, autophagy-responsive multifunctional nanoparticles provide a novel potential strategy for solid tumor treatment.

Citing Articles

Cell-Penetrating Peptide-Based Delivery of Macromolecular Drugs: Development, Strategies, and Progress.

Sun Z, Huang J, Fishelson Z, Wang C, Zhang S Biomedicines. 2023; 11(7).

PMID: 37509610 PMC: 10377493. DOI: 10.3390/biomedicines11071971.


MST4 promotes proliferation, invasion, and metastasis of gastric cancer by enhancing autophagy.

Liu P, Li L, Wang W, He C, Xu C Heliyon. 2023; 9(6):e16735.

PMID: 37313160 PMC: 10258413. DOI: 10.1016/j.heliyon.2023.e16735.

References
1.
Wu M, Chen J, Veroniaina H, Mukhopadhyay S, Wu Z, Wu Z . Pea-like nanocabins enable autonomous cruise and step-by-step drug pushing for deep tumor inhibition. Nanomedicine. 2019; 18:122-134. DOI: 10.1016/j.nano.2019.02.025. View

2.
Zhang Z, Wang T, Yang R, Fu S, Guan L, Hou T . Small Morph Nanoparticles for Deep Tumor Penetration via Caveolae-Mediated Transcytosis. ACS Appl Mater Interfaces. 2020; 12(34):38499-38511. DOI: 10.1021/acsami.0c06872. View

3.
Patel P, Kansara K, Singh R, Shukla R, Singh S, Dhawan A . Cellular internalization and antioxidant activity of cerium oxide nanoparticles in human monocytic leukemia cells. Int J Nanomedicine. 2018; 13(T-NANO 2014 Abstracts):39-41. PMC: 5863629. DOI: 10.2147/IJN.S124996. View

4.
He Y, Cong C, Li L, Luo L, He Y, Hao Z . Sequential Intra-Intercellular Delivery of Nanomedicine for Deep Drug-Resistant Solid Tumor Penetration. ACS Appl Mater Interfaces. 2020; 12(8):8978-8988. DOI: 10.1021/acsami.9b20062. View

5.
Wang X, Li M, Ren K, Xia C, Li J, Yu Q . On-Demand Autophagy Cascade Amplification Nanoparticles Precisely Enhanced Oxaliplatin-Induced Cancer Immunotherapy. Adv Mater. 2020; 32(32):e2002160. DOI: 10.1002/adma.202002160. View