» Articles » PMID: 35746430

Real-Time Sound Source Localization for Low-Power IoT Devices Based on Multi-Stream CNN

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2022 Jun 24
PMID 35746430
Authors
Affiliations
Soon will be listed here.
Abstract

Voice-activated artificial intelligence (AI) technology has advanced rapidly and is being adopted in various devices such as smart speakers and display products, which enable users to multitask without touching the devices. However, most devices equipped with cameras and displays lack mobility; therefore, users cannot avoid touching them for face-to-face interactions, which contradicts the voice-activated AI philosophy. In this paper, we propose a deep neural network-based real-time sound source localization (SSL) model for low-power internet of things (IoT) devices based on microphone arrays and present a prototype implemented on actual IoT devices. The proposed SSL model delivers multi-channel acoustic data to parallel convolutional neural network layers in the form of multiple streams to capture the unique delay patterns for the low-, mid-, and high-frequency ranges, and estimates the fine and coarse location of voices. The model adapted in this study achieved an accuracy of 91.41% on fine location estimation and a direction of arrival error of 7.43° on noisy data. It achieved a processing time of 7.811 ms per 40 ms samples on the Raspberry Pi 4B. The proposed model can be applied to a camera-based humanoid robot that mimics the manner in which humans react to trigger voices in crowded environments.

Citing Articles

A Survey of Sound Source Localization and Detection Methods and Their Applications.

Jekaterynczuk G, Piotrowski Z Sensors (Basel). 2024; 24(1).

PMID: 38202930 PMC: 10781166. DOI: 10.3390/s24010068.


Machine Learning Assists IoT Localization: A Review of Current Challenges and Future Trends.

Shahbazian R, Macrina G, Scalzo E, Guerriero F Sensors (Basel). 2023; 23(7).

PMID: 37050611 PMC: 10099106. DOI: 10.3390/s23073551.


Gaussian Process Regression for Single-Channel Sound Source Localization System Based on Homomorphic Deconvolution.

Kim K, Hong Y Sensors (Basel). 2023; 23(2).

PMID: 36679566 PMC: 9865750. DOI: 10.3390/s23020769.

References
1.
Vera-Diaz J, Pizarro D, Macias-Guarasa J . Towards End-to-End Acoustic Localization Using Deep Learning: From Audio Signals to Source Position Coordinates. Sensors (Basel). 2018; 18(10). PMC: 6210564. DOI: 10.3390/s18103418. View