» Articles » PMID: 35743208

Electrochemical Determination of Interaction Between SARS-CoV-2 Spike Protein and Specific Antibodies

Abstract

The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.

Citing Articles

Localised Electrochemical Impedance Spectroscopy of Gold Nanoparticles Labelled Antibodies Probed by Platinum Microstructured Ultramicroelectrode.

Zinovicius A, Morkvenaite-Vilkonciene I, Ramanavicius A Materials (Basel). 2024; 17(6).

PMID: 38541493 PMC: 10971954. DOI: 10.3390/ma17061339.


Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases.

Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen C, Viter R Biosensors (Basel). 2023; 13(6).

PMID: 37366985 PMC: 10296657. DOI: 10.3390/bios13060620.


Investigation of Biomolecule Interactions: Optical-, Electrochemical-, and Acoustic-Based Biosensors.

Plikusiene I, Ramanaviciene A Biosensors (Basel). 2023; 13(2).

PMID: 36832058 PMC: 9954023. DOI: 10.3390/bios13020292.


Electrochemical Biosensor for the Determination of Specific Antibodies against SARS-CoV-2 Spike Protein.

Zukauskas S, Rucinskiene A, Ratautaite V, Ramanaviciene A, Pilvenyte G, Bechelany M Int J Mol Sci. 2023; 24(1).

PMID: 36614164 PMC: 9821011. DOI: 10.3390/ijms24010718.


Polyaniline-based electrochemical immunosensor for the determination of antibodies against SARS-CoV-2 spike protein.

Drobysh M, Ramanavicius A, Baradoke A Sci Total Environ. 2022; 862:160700.

PMID: 36493838 PMC: 9726207. DOI: 10.1016/j.scitotenv.2022.160700.

References
1.
Ramanavicius S, Ramanavicius A . Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel). 2020; 13(1). PMC: 7795957. DOI: 10.3390/polym13010049. View

2.
Morkvenaite-Vilkonciene I, Ramanaviciene A, Kisieliute A, Bucinskas V, Ramanavicius A . Scanning electrochemical microscopy in the development of enzymatic sensors and immunosensors. Biosens Bioelectron. 2019; 141:111411. DOI: 10.1016/j.bios.2019.111411. View

3.
Raziq A, Kidakova A, Boroznjak R, Reut J, Opik A, Syritski V . Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron. 2021; 178:113029. PMC: 7826012. DOI: 10.1016/j.bios.2021.113029. View

4.
Kim T, Kang J, Lee J, Yoon J . Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Res. 2011; 45(15):4615-22. DOI: 10.1016/j.watres.2011.06.010. View

5.
Eissa S, Zourob M . Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2. Anal Chem. 2020; 93(3):1826-1833. DOI: 10.1021/acs.analchem.0c04719. View