6.
Wang X, Li H, Gao Z, Wang L, Ren Z
. Localization of quantitative trait loci for cucumber fruit shape by a population of chromosome segment substitution lines. Sci Rep. 2020; 10(1):11030.
PMC: 7334212.
DOI: 10.1038/s41598-020-68312-8.
View
7.
Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J
. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics. 2014; 15:1158.
PMC: 4367881.
DOI: 10.1186/1471-2164-15-1158.
View
8.
Park Y, Sensoy S, Wye C, Antonise R, Peleman J, Havey M
. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome. 2001; 43(6):1003-10.
View
9.
Tang H, Dong X, Wang J, Xia J, Xie F, Zhang Y
. Fine Mapping and Candidate Gene Prediction for White Immature Fruit Skin in Cucumber ( L.). Int J Mol Sci. 2018; 19(5).
PMC: 5983590.
DOI: 10.3390/ijms19051493.
View
10.
Li C, Bian B, Gong T, Liao W
. Comparative proteomic analysis of key proteins during abscisic acid-hydrogen peroxide-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. J Plant Physiol. 2018; 229:185-194.
DOI: 10.1016/j.jplph.2018.07.012.
View
11.
He L, Lu X, Tian J, Yang Y, Li B, Li J
. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci. 2012; 10(1):42.
PMC: 3576256.
DOI: 10.1186/1477-5956-10-42.
View
12.
Sharif R, Xie C, Wang J, Cao Z, Zhang H, Chen P
. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. Int J Biol Macromol. 2020; .
DOI: 10.1016/j.ijbiomac.2020.04.124.
View
13.
Bityutskii N, Yakkonen K, Petrova A, Shavarda A
. Interactions between aluminium, iron and silicon in Cucumber sativus L. grown under acidic conditions. J Plant Physiol. 2017; 218:100-108.
DOI: 10.1016/j.jplph.2017.08.003.
View
14.
Hu C, Zhao H, Wang W, Xu M, Shi J, Nie X
. Identification of Conserved and Diverse Metabolic Shift of the Stylar, Intermediate and Peduncular Segments of Cucumber Fruit during Development. Int J Mol Sci. 2018; 19(1).
PMC: 5796084.
DOI: 10.3390/ijms19010135.
View
15.
Song M, Zhang M, Cheng F, Wei Q, Wang J, Davoudi M
. An irregularly striped rind mutant reveals new insight into the function of PG1β in cucumber (Cucumis sativus L.). Theor Appl Genet. 2019; 133(2):371-382.
DOI: 10.1007/s00122-019-03468-0.
View
16.
Adhikari B, Savory E, Vaillancourt B, Childs K, Hamilton J, Day B
. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS One. 2012; 7(4):e34954.
PMC: 3335828.
DOI: 10.1371/journal.pone.0034954.
View
17.
Wang M, Jiang B, Peng Q, Liu W, He X, Liang Z
. Transcriptome Analyses in Different Cucumber Cultivars Provide Novel Insights into Drought Stress Responses. Int J Mol Sci. 2018; 19(7).
PMC: 6073345.
DOI: 10.3390/ijms19072067.
View
18.
Xu Q, Guo S, Li L, An Y, Shu S, Sun J
. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Plant Physiol Biochem. 2016; 105:21-28.
DOI: 10.1016/j.plaphy.2016.04.001.
View
19.
Miao L, Di Q, Sun T, Li Y, Duan Y, Wang J
. Integrated Metabolome and Transcriptome Analysis Provide Insights into the Effects of Grafting on Fruit Flavor of Cucumber with Different Rootstocks. Int J Mol Sci. 2019; 20(14).
PMC: 6678626.
DOI: 10.3390/ijms20143592.
View
20.
Sang T, Shan X, Li B, Shu S, Sun J, Guo S
. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant Cell Rep. 2016; 35(8):1769-82.
DOI: 10.1007/s00299-016-1995-x.
View