» Articles » PMID: 35719975

Changes in Pulmonary Microenvironment Aids Lung Metastasis of Breast Cancer

Overview
Journal Front Oncol
Specialty Oncology
Date 2022 Jun 20
PMID 35719975
Authors
Affiliations
Soon will be listed here.
Abstract

Breast cancer has become the most common malignant disease in the world according to the International Agency for Research on Cancer (IARC), and the most critical cause of death is distant metastasis. The lung is the extremely common visceral site for breast cancer metastasis. Lung metastasis of breast cancer is not only dependent on the invasive ability of the tumor itself, but also closely relates to the pulmonary microenvironment. In the progression of breast cancer, the formation of specific microenvironment in lungs can provide suitable conditions for the metastasis of breast cancer. Pulmonary inflammatory response, angiogenesis, extracellular matrix remodeling, some chemotherapeutic agents and so on all play important roles in the formation of the pulmonary microenvironment. This review highlights recent findings regarding the alterations of pulmonary microenvironment in lung metastasis of breast cancer, with a focus on various cells and acellular components.

Citing Articles

4T1 Cell Membrane Biomimetic Nanovehicle for Enhanced Breast Cancer Treatment.

Liu M, Sun Y, Wei Q, Zhang A, Wang S, Wang D ACS Med Chem Lett. 2025; 16(1):51-58.

PMID: 39811139 PMC: 11726363. DOI: 10.1021/acsmedchemlett.4c00425.


Metabolic shifts in lipid utilization and reciprocal interactions within the lung metastatic niche of triple-negative breast cancer revealed by spatial multi-omics.

Kan J, Lee H, Hou M, Tsai H, Jian S, Chang C Cell Death Dis. 2024; 15(12):899.

PMID: 39695088 PMC: 11655832. DOI: 10.1038/s41419-024-07205-4.


Early death prediction model for breast cancer with synchronous lung metastases: an analysis of the SEER database.

Li Q, Sun T, Zhang Z Gland Surg. 2024; 13(10):1708-1728.

PMID: 39544977 PMC: 11558301. DOI: 10.21037/gs-24-240.


Inhalable nanoparticles with enhanced cuproptosis and cGAS-STING activation for synergistic lung metastasis immunotherapy.

Yan C, Lv H, Feng Y, Li Y, Zhao Z Acta Pharm Sin B. 2024; 14(8):3697-3710.

PMID: 39220876 PMC: 11365430. DOI: 10.1016/j.apsb.2024.04.028.


Comprehensive integrated single-cell RNA sequencing analysis of brain metastasis and glioma microenvironment: Contrasting heterogeneity landscapes.

Sajjadi S, Salehi N, Sadeghi M PLoS One. 2024; 19(7):e0306220.

PMID: 39058687 PMC: 11280140. DOI: 10.1371/journal.pone.0306220.


References
1.
Kumar V, Sharma A . Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010; 10(11):1325-34. DOI: 10.1016/j.intimp.2010.08.012. View

2.
Tan S, Krasnow M . Developmental origin of lung macrophage diversity. Development. 2016; 143(8):1318-27. PMC: 4852511. DOI: 10.1242/dev.129122. View

3.
Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M . Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018; 361(6409). PMC: 6777850. DOI: 10.1126/science.aao4227. View

4.
Coeshott C, Ohnemus C, Pilyavskaya A, Ross S, Wieczorek M, Kroona H . Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci U S A. 1999; 96(11):6261-6. PMC: 26869. DOI: 10.1073/pnas.96.11.6261. View

5.
Veglia F, Tyurin V, Blasi M, De Leo A, Kossenkov A, Donthireddy L . Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019; 569(7754):73-78. PMC: 6557120. DOI: 10.1038/s41586-019-1118-2. View