Artificial Intelligence in Predicting Systemic Parameters and Diseases From Ophthalmic Imaging
Overview
Affiliations
Artificial Intelligence (AI) analytics has been used to predict, classify, and aid clinical management of multiple eye diseases. Its robust performances have prompted researchers to expand the use of AI into predicting systemic, non-ocular diseases and parameters based on ocular images. Herein, we discuss the reasons why the eye is well-suited for systemic applications, and review the applications of deep learning on ophthalmic images in the prediction of demographic parameters, body composition factors, and diseases of the cardiovascular, hematological, neurodegenerative, metabolic, renal, and hepatobiliary systems. Three main imaging modalities are included-retinal fundus photographs, optical coherence tomographs and external ophthalmic images. We examine the range of systemic factors studied from ophthalmic imaging in current literature and discuss areas of future research, while acknowledging current limitations of AI systems based on ophthalmic images.
Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review.
Grzybowski A, Jin K, Zhou J, Pan X, Wang M, Ye J Ophthalmol Ther. 2024; 13(8):2125-2149.
PMID: 38913289 PMC: 11246322. DOI: 10.1007/s40123-024-00981-4.
Gong A, Fu W, Li H, Guo N, Pan T Front Endocrinol (Lausanne). 2024; 15:1364519.
PMID: 38549767 PMC: 10973133. DOI: 10.3389/fendo.2024.1364519.
Danielescu C, Dabija M, Nedelcu A, Lupu V, Lupu A, Ioniuc I J Pers Med. 2024; 14(1).
PMID: 38248746 PMC: 10817503. DOI: 10.3390/jpm14010045.
Al-Halafi A Saudi J Ophthalmol. 2023; 37(3):185-192.
PMID: 38074306 PMC: 10701145. DOI: 10.4103/sjopt.sjopt_153_23.
Yi J, Rim T, Park S, Kim S, Kim H, Lee C Eur Heart J Digit Health. 2023; 4(3):236-244.
PMID: 37265875 PMC: 10232236. DOI: 10.1093/ehjdh/ztad023.