» Articles » PMID: 35699769

Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices

Overview
Journal Nanomicro Lett
Publisher Springer
Date 2022 Jun 14
PMID 35699769
Authors
Affiliations
Soon will be listed here.
Abstract

Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology. An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors. This article aims to review the research progress on the physicochemical properties, electrochemical performance, and reaction mechanisms of electrode materials for electrochemical proton storage. According to the different charge storage mechanisms, the surface redox, intercalation, and conversion materials are classified and introduced in detail, where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified. Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage. Finally, this review provides a framework for research directions of charge storage mechanism, basic principles of material structure design, construction strategies of full cell device, and goals of practical application for electrochemical proton storage.

Citing Articles

An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage.

Huang Z, Peng Y, Zhao J, Zhang S, Qi P, Qu X Nanomicro Lett. 2024; 17(1):98.

PMID: 39729147 PMC: 11680540. DOI: 10.1007/s40820-024-01604-0.


Recent Advances in Fibrous Materials for Hydroelectricity Generation.

Ge C, Xu D, Feng X, Yang X, Song Z, Song Y Nanomicro Lett. 2024; 17(1):29.

PMID: 39347862 PMC: 11444048. DOI: 10.1007/s40820-024-01537-8.


"Zero-Strain" NiNbO Fibers for All-Climate Lithium Storage.

Zhao Y, Yuan Q, Yang L, Liang G, Cheng Y, Wu L Nanomicro Lett. 2024; 17(1):15.

PMID: 39327350 PMC: 11427633. DOI: 10.1007/s40820-024-01497-z.


Symmetrical Design of Biphenazine Derivative Anode for Proton Ion Batteries with High Voltage and Long-Term Cycle Stability.

Wang C, He D, Wang H, Guo J, Bao Z, Feng Y Adv Sci (Weinh). 2024; 11(30):e2401314.

PMID: 38877663 PMC: 11321615. DOI: 10.1002/advs.202401314.


Observation of super-Nernstian proton-coupled electron transfer and elucidation of nature of charge carriers in a multiredox conjugated polymer.

Tran D, West S, Speck E, Jenekhe S Chem Sci. 2024; 15(20):7623-7642.

PMID: 38784743 PMC: 11110174. DOI: 10.1039/d4sc00785a.


References
1.
Yang Y, Zhang P, Hao L, Cheng P, Chen Y, Zhang Z . Grotthuss Proton-Conductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Angew Chem Int Ed Engl. 2021; 60(40):21838-21845. DOI: 10.1002/anie.202105725. View

2.
Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q . Initiating Hexagonal MoO for Superb-Stable and Fast NH Storage Based on Hydrogen Bond Chemistry. Adv Mater. 2020; 32(14):e1907802. DOI: 10.1002/adma.201907802. View

3.
Sun W, Yeung M, Lech A, Lin C, Lee C, Li T . High Surface Area Tunnels in Hexagonal WO₃. Nano Lett. 2015; 15(7):4834-8. DOI: 10.1021/acs.nanolett.5b02013. View

4.
Geng K, He T, Liu R, Dalapati S, Tan K, Li Z . Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem Rev. 2020; 120(16):8814-8933. DOI: 10.1021/acs.chemrev.9b00550. View

5.
Simon P, Gogotsi Y . Perspectives for electrochemical capacitors and related devices. Nat Mater. 2020; 19(11):1151-1163. DOI: 10.1038/s41563-020-0747-z. View