» Articles » PMID: 35694537

Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.

Citing Articles

Toward a cure - Advancing HIV/AIDs treatment modalities beyond antiretroviral therapy: A Review.

Alum E, Uti D, Ugwu O, Alum B Medicine (Baltimore). 2024; 103(27):e38768.

PMID: 38968496 PMC: 11224816. DOI: 10.1097/MD.0000000000038768.


Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells.

Kruglova N, Shepelev M Biomedicines. 2024; 12(1).

PMID: 38255224 PMC: 10813735. DOI: 10.3390/biomedicines12010119.


Efficient Editing of the CXCR4 Locus Using Cas9 Ribonucleoprotein Complexes Stabilized with Polyglutamic Acid.

Golubev D, Komkov D, Shepelev M, Mazurov D, Kruglova N Dokl Biol Sci. 2024; 513(Suppl 1):S28-S32.

PMID: 38190037 DOI: 10.1134/S0012496623700862.


CRISPR-Cas: 'The Multipurpose Molecular Tool' for Gene Therapy and Diagnosis.

Sauvagere S, Siatka C Genes (Basel). 2023; 14(8).

PMID: 37628594 PMC: 10454384. DOI: 10.3390/genes14081542.


Identification of Anti-gp41 Monoclonal Antibodies That Effectively Target Cytotoxic Immunoconjugates to Cells Infected with Human Immunodeficiency Virus, Type 1.

Klug G, Cole F, Hicar M, Watt C, Peters T, Pincus S Vaccines (Basel). 2023; 11(4).

PMID: 37112741 PMC: 10144985. DOI: 10.3390/vaccines11040829.


References
1.
Liu Z, Liang J, Chen S, Wang K, Liu X, Liu B . Genome editing of CCR5 by AsCpf1 renders CD4T cells resistance to HIV-1 infection. Cell Biosci. 2020; 10:85. PMC: 7346486. DOI: 10.1186/s13578-020-00444-w. View

2.
Liu H, Ma Y, Su Y, Smith M, Liu Y, Jin Y . Emerging trends of HIV drug resistance in Chinese HIV-infected patients receiving first-line highly active antiretroviral therapy: a systematic review and meta-analysis. Clin Infect Dis. 2014; 59(10):1495-502. PMC: 4565655. DOI: 10.1093/cid/ciu590. View

3.
Roychoudhury P, De Silva Feelixge H, Reeves D, Mayer B, Stone D, Schiffer J . Viral diversity is an obligate consideration in CRISPR/Cas9 designs for targeting the HIV reservoir. BMC Biol. 2018; 16(1):75. PMC: 6040082. DOI: 10.1186/s12915-018-0544-1. View

4.
Tebas P, Stein D, Tang W, Frank I, Wang S, Lee G . Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014; 370(10):901-10. PMC: 4084652. DOI: 10.1056/NEJMoa1300662. View

5.
Dampier W, Nonnemacher M, Sullivan N, Jacobson J, Wigdahl B . HIV Excision Utilizing CRISPR/Cas9 Technology: Attacking the Proviral Quasispecies in Reservoirs to Achieve a Cure. MOJ Immunol. 2015; 1(4). PMC: 4399856. DOI: 10.15406/moji.2014.01.00022. View