» Articles » PMID: 35686290

Reducing Rotation Age to Address Increasing Disturbances in Central Europe: Potential and Limitations

Overview
Journal For Ecol Manage
Date 2022 Jun 10
PMID 35686290
Authors
Affiliations
Soon will be listed here.
Abstract

Forest disturbance regimes are intensifying in many parts of the globe. In order to mitigate disturbance impacts a number of management responses have been proposed, yet their effectiveness in addressing changing disturbance regimes remains largely unknown. The strong positive relationship between forest age and the vulnerability to disturbances such as windthrows and bark beetle infestations suggests that a reduced rotation length can be a potent means for mitigating the impacts of natural disturbances. However, disturbance mitigation measures such as shortened rotation lengths (SRL) can also have undesired consequences on ecosystem services and biodiversity, which need to be considered in their application. Here, we used the process-based landscape and disturbance model iLand to investigate the effects of SRL on the vulnerability of a 16,000 ha forest landscape in Central Europe to wind and bark beetle disturbances. We experimentally reduced the current rotation length (between 100 and 115 years) by up to -40% in 10% increments, and studied effects on disturbance dynamics under current and future climate conditions over a 200-year simulation period. Simultaneously, we quantified the collateral effects of SRL on forest carbon stocks and indicators of biodiversity. Shortening the rotation length by 40% decreased disturbances by 14%. This effect was strongly diminished under future climate change, reducing the mitigating effect of shortened rotation to < 6%. Collateral effects were severe in the initial decades after implementation: Reducing the rotation length by 40% caused a spike in harvested timber volume (+ 92%), decreased total forest carbon storage by 6% and reduced the number of large trees on the landscape by 20%. The long-term effects of SRL were less pronounced. At the same time, SRL caused an increase in tree species diversity. Shortening rotation length can reduce the impact of wind and bark beetle disturbances, but the overall efficiency of the measure is limited and decreases under climate change. Given the potential for undesired collateral effects we conclude that a reduction of the rotation length is no panacea for managing increasing disturbances, and should be applied in combination with other management measures reducing risks and fostering resilience.

Citing Articles

Balancing disturbance risk and ecosystem service provisioning in Swiss mountain forests: an increasing challenge under climate change.

Thrippleton T, Temperli C, Krumm F, Mey R, Zell J, Stroheker S Reg Environ Change. 2023; 23(1):29.

PMID: 36713958 PMC: 9870838. DOI: 10.1007/s10113-022-02015-w.


Tree species admixture increases ecosystem service provision in simulated spruce- and beech-dominated stands.

Mey R, Zell J, Thurig E, Stadelmann G, Bugmann H, Temperli C Eur J For Res. 2022; 141(5):801-820.

PMID: 36186109 PMC: 9519722. DOI: 10.1007/s10342-022-01474-4.


Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management.

Dobor L, Hlasny T, Zimova S Ecol Evol. 2020; 10(21):12233-12245.

PMID: 33209284 PMC: 7663067. DOI: 10.1002/ece3.6854.

References
1.
Thom D, Rammer W, Seidl R . Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Chang Biol. 2016; 23(1):269-282. PMC: 5159623. DOI: 10.1111/gcb.13506. View

2.
Dobor L, Hlasny T, Rammer W, Zimova S, Barka I, Seidl R . Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. J Environ Manage. 2019; 254:109792. PMC: 7612771. DOI: 10.1016/j.jenvman.2019.109792. View

3.
Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J, Neumann M . Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nat Commun. 2018; 9(1):4978. PMC: 6255806. DOI: 10.1038/s41467-018-07539-6. View

4.
Mcdowell N, Allen C, Anderson-Teixeira K, Aukema B, Bond-Lamberty B, Chini L . Pervasive shifts in forest dynamics in a changing world. Science. 2020; 368(6494). DOI: 10.1126/science.aaz9463. View

5.
Ricotta C, Szeidl L . Diversity partitioning of Rao's quadratic entropy. Theor Popul Biol. 2009; 76(4):299-302. DOI: 10.1016/j.tpb.2009.10.001. View