» Articles » PMID: 35675721

Machine Learning Algorithms on Eye Tracking Trajectories to Classify Patients with Spatial Neglect

Overview
Date 2022 Jun 8
PMID 35675721
Authors
Affiliations
Soon will be listed here.
Abstract

Background And Objective: Eye-movement trajectories are rich behavioral data, providing a window on how the brain processes information. We address the challenge of characterizing signs of visuo-spatial neglect from saccadic eye trajectories recorded in brain-damaged patients with spatial neglect as well as in healthy controls during a visual search task.

Methods: We establish a standardized pre-processing pipeline adaptable to other task-based eye-tracker measurements. We use traditional machine learning algorithms together with deep convolutional networks (both 1D and 2D) to automatically analyze eye trajectories.

Results: Our top-performing machine learning models classified neglect patients vs. healthy individuals with an Area Under the ROC curve (AUC) ranging from 0.83 to 0.86. Moreover, the 1D convolutional neural network scores correlated with the degree of severity of neglect behavior as estimated with standardized paper-and-pencil tests and with the integrity of white matter tracts measured from Diffusion Tensor Imaging (DTI). Interestingly, the latter showed a clear correlation with the third branch of the superior longitudinal fasciculus (SLF), especially damaged in neglect.

Conclusions: The study introduces new methods for both the pre-processing and the classification of eye-movement trajectories in patients with neglect syndrome. The proposed methods can likely be applied to other types of neurological diseases opening the possibility of new computer-aided, precise, sensitive and non-invasive diagnostic tools.

Citing Articles

Impaired interhemispheric synchrony in patients with iridocyclitis and classification using machine learning: an fMRI study.

Tong Y, Wen Z, Huang X Front Immunol. 2024; 15:1474988.

PMID: 39737192 PMC: 11683089. DOI: 10.3389/fimmu.2024.1474988.


Virtual reality gameplay classification illustrates the multidimensionality of visuospatial neglect.

Painter D, Norwood M, Marsh C, Hine T, Woodman C, Libera M Brain Commun. 2024; 6(4):fcae145.

PMID: 39165478 PMC: 11333965. DOI: 10.1093/braincomms/fcae145.