» Articles » PMID: 35673559

APOBEC-mediated Mutagenesis is a Favorable Predictor of Prognosis and Immunotherapy for Bladder Cancer Patients: Evidence from Pan-cancer Analysis and Multiple Databases

Abstract

The APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) family-mediated mutagenesis is widespread in human cancers. However, our knowledge of the biological feature and clinical relevance of APOBECs and APOBEC mutagenesis in cancers remains limited. In this study, with a series of bioinformatic and statistical approaches, we performed a comprehensive analysis of multiple levels of data, including whole-exome sequencing (WES) and targeted next-generation sequencing (NGS), transcriptome (bulk RNA-seq and single-cell RNA-seq), immune signatures and immune checkpoint blockade (ICB) potential, patient survival and drug sensitivity, to reveal the distribution characteristics and clinical significance of APOBECs and APOBEC mutagenesis in pan-cancer especially bladder cancer (BLCA). APOBEC mutagenesis dominates in the mutational patterns of BLCA. A higher enrichment score of APOBEC mutagenesis correlates with favorable prognosis, immune activation and potential ICB response in BLCA patients. APOBEC3A and 3B play a significant role in the malignant progression and cell differentiation within the tumor microenvironment. Furthermore, using machine learning approaches, a prognostic APOBEC mutagenesis-related model was established and validated in different BLCA cohorts. Our study illustrates the characterization of APOBECs and APOBEC mutagenesis in multiple cancer types and highlights its potential value as a promising biomarker for prognosis and immunotherapy in BLCA.

Citing Articles

Integration of multiple machine learning approaches develops a gene mutation-based classifier for accurate immunotherapy outcomes.

Shi R, Sun J, Zhou Z, Shi M, Wang X, Gao Z NPJ Precis Oncol. 2025; 9(1):54.

PMID: 40011681 PMC: 11865301. DOI: 10.1038/s41698-025-00842-8.


A pan-cancer analysis of homeobox family: expression characteristics and latent significance in prognosis and immune microenvironment.

Wang Y, Gao J, Ren Z, Shen Z, Gu W, Miao Q Front Oncol. 2025; 15:1521652.

PMID: 39980564 PMC: 11840236. DOI: 10.3389/fonc.2025.1521652.


Comprehensive analysis of CLEC family genes in gastric cancer prognosis immune response and treatment.

Zhu W, Yi Q, Wang J, Ouyang X, Yang K, Jiang B Sci Rep. 2025; 15(1):5956.

PMID: 39966377 PMC: 11836380. DOI: 10.1038/s41598-024-80204-9.


Deaminase-Driven Reverse Transcription Mutagenesis in Oncogenesis: Critical Analysis of Transcriptional Strand Asymmetries of Single Base Substitution Signatures.

Steele E, Lindley R Int J Mol Sci. 2025; 26(3).

PMID: 39940758 PMC: 11817618. DOI: 10.3390/ijms26030989.


Unleashing the power of urine‑based biomarkers in diagnosis, prognosis and monitoring of bladder cancer (Review).

Wan X, Wang D, Zhang X, Xu M, Huang Y, Qin W Int J Oncol. 2025; 66(3).

PMID: 39917986 PMC: 11837902. DOI: 10.3892/ijo.2025.5724.


References
1.
McGrail D, Pilie P, Rashid N, Voorwerk L, Slagter M, Kok M . High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021; 32(5):661-672. PMC: 8053682. DOI: 10.1016/j.annonc.2021.02.006. View

2.
Newman A, Liu C, Green M, Gentles A, Feng W, Xu Y . Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015; 12(5):453-7. PMC: 4739640. DOI: 10.1038/nmeth.3337. View

3.
Lee J, Leem S, Lee S, Kim S, Park E, Kim S . Expression signature of E2F1 and its associated genes predict superficial to invasive progression of bladder tumors. J Clin Oncol. 2010; 28(16):2660-7. DOI: 10.1200/JCO.2009.25.0977. View

4.
Wang L, Sebra R, Sfakianos J, Allette K, Wang W, Yoo S . A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles. Genome Med. 2020; 12(1):24. PMC: 7049190. DOI: 10.1186/s13073-020-0720-0. View

5.
Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov J, Tamayo P . The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2016; 1(6):417-425. PMC: 4707969. DOI: 10.1016/j.cels.2015.12.004. View