6.
Qu S, Liang Z, Zhu X
. Advances and challenges in intensity-modulated radiotherapy for nasopharyngeal carcinoma. Asian Pac J Cancer Prev. 2015; 16(5):1687-92.
DOI: 10.7314/apjcp.2015.16.5.1687.
View
7.
Solberg T, Holly F, de Salles A, WALLACE R, Smathers J
. Implications of tissue heterogeneity for radiosurgery in head and neck tumors. Int J Radiat Oncol Biol Phys. 1995; 32(1):235-9.
DOI: 10.1016/0360-3016(94)00495-7.
View
8.
Huang C, Chu T, Lin S, Lin J, Hsieh C
. Accuracy of the convolution/superposition dose calculation algorithm at the condition of electron disequilibrium. Appl Radiat Isot. 2002; 57(6):825-30.
DOI: 10.1016/s0969-8043(02)00228-2.
View
9.
Chen J, Huang Y, Kuo S, Hong R, Ko J, Lou P
. Intensity-modulated radiation therapy achieves better local control compared to three-dimensional conformal radiation therapy for T4-stage nasopharyngeal carcinoma. Oncotarget. 2016; 8(8):14068-14077.
PMC: 5355163.
DOI: 10.18632/oncotarget.12736.
View
10.
Ahnesjo A, Andreo P, Brahme A
. Calculation and application of point spread functions for treatment planning with high energy photon beams. Acta Oncol. 1987; 26(1):49-56.
DOI: 10.3109/02841868709092978.
View
11.
Li X, Yu C, Holmes T
. A systematic evaluation of air cavity dose perturbation in megavoltage x-ray beams. Med Phys. 2000; 27(5):1011-7.
DOI: 10.1118/1.598966.
View
12.
Martens C, Reynaert N, De Wagter C, Nilsson P, Coghe M, Palmans H
. Underdosage of the upper-airway mucosa for small fields as used in intensity-modulated radiation therapy: a comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations. Med Phys. 2002; 29(7):1528-35.
DOI: 10.1118/1.1487421.
View
13.
Epp E, Boyer A, Doppke K
. Underdosing of lesions resulting from lack of electronic equilibrium in upper respiratory air cavities irradiated by 10MV x-ray beams. Int J Radiat Oncol Biol Phys. 1977; 2(7-8):613-9.
DOI: 10.1016/0360-3016(77)90040-2.
View
14.
Ezzell G, Burmeister J, Dogan N, LoSasso T, Mechalakos J, Mihailidis D
. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009; 36(11):5359-73.
DOI: 10.1118/1.3238104.
View
15.
Joshi C, Darko J, Vidyasagar P, Schreiner L
. Dosimetry of interface region near closed air cavities for Co-60, 6 MV and 15 MV photon beams using Monte Carlo simulations. J Med Phys. 2010; 35(2):73-80.
PMC: 2884308.
DOI: 10.4103/0971-6203.62197.
View
16.
Kan W, Wu P, Leung H, Lo T, Chung C, Kwong D
. The effect of the nasopharyngeal air cavity on x-ray interface doses. Phys Med Biol. 1998; 43(3):529-37.
DOI: 10.1088/0031-9155/43/3/005.
View
17.
Wang L, Yorke E, Chui C
. Monte Carlo evaluation of tissue inhomogeneity effects in the treatment of the head and neck. Int J Radiat Oncol Biol Phys. 2001; 50(5):1339-49.
DOI: 10.1016/s0360-3016(01)01614-5.
View
18.
Klein E, Hanley J, Bayouth J, Yin F, Simon W, Dresser S
. Task Group 142 report: quality assurance of medical accelerators. Med Phys. 2009; 36(9):4197-212.
DOI: 10.1118/1.3190392.
View
19.
Behrens C
. Dose build-up behind air cavities for Co-60, 4, 6 and 8 MV. Measurements and Monte Carlo simulations. Phys Med Biol. 2006; 51(22):5937-50.
DOI: 10.1088/0031-9155/51/22/015.
View
20.
Haraldsson P, Knoos T, Nystrom H, Engstrom P
. Monte Carlo study of TLD measurements in air cavities. Phys Med Biol. 2003; 48(18):N253-9.
DOI: 10.1088/0031-9155/48/18/401.
View