» Articles » PMID: 35668132

Lanthanum Nitrate As Aqueous Electrolyte Additive for Favourable Zinc Metal Electrodeposition

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jun 6
PMID 35668132
Authors
Affiliations
Soon will be listed here.
Abstract

Aqueous zinc batteries are appealing devices for cost-effective and environmentally sustainable energy storage. However, the zinc metal deposition at the anode strongly influences the battery cycle life and performance. To circumvent this issue, here we propose the use of lanthanum nitrate (La(NO)) as supporting salt for aqueous zinc sulfate (ZnSO) electrolyte solutions. Via physicochemical and electrochemical characterizations, we demonstrate that this peculiar electrolyte formulation weakens the electric double layer repulsive force, thus, favouring dense metallic zinc deposits and regulating the charge distribution at the zinc metal|electrolyte interface. When tested in Zn||VS full coin cell configuration (with cathode mass loading of 16 mg cm), the electrolyte solution containing the lanthanum ions enables almost 1000 cycles at 1 A g (after 5 activation cycles at 0.05 A g) with a stable discharge capacity of about 90 mAh g and an average cell discharge voltage of ∼0.54 V.

Citing Articles

Engineering Interphasial Chemistry for Zn Anodes in Aqueous Zinc Ion Batteries.

Zhu B, Tang J, Yao Z, Cui J, Hou Y, Chen J Chem Bio Eng. 2025; 1(5):381-413.

PMID: 39975799 PMC: 11835151. DOI: 10.1021/cbe.4c00053.


Reversible multivalent carrier redox exceeding intercalation capacity boundary.

Sun Y, Qi R, Lei Q, Zhang W, Li H, Lin M Nat Commun. 2025; 16(1):343.

PMID: 39747051 PMC: 11697213. DOI: 10.1038/s41467-024-55386-5.


Interfacial Confinement Effect of Self-Adsorbed Monolayer Enables Highly Reversible Zn Metal Anodes.

Huo Y, Huang S, Liu Z, Li M, Cao Y, Tian P Adv Sci (Weinh). 2024; 12(8):e2413731.

PMID: 39737529 PMC: 11848536. DOI: 10.1002/advs.202413731.


Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency.

Meng Y, Wang M, Wang J, Huang X, Zhou X, Sajid M Nat Commun. 2024; 15(1):8431.

PMID: 39343779 PMC: 11439932. DOI: 10.1038/s41467-024-52611-z.


Spontaneous grain refinement effect of rare earth zinc alloy anodes enables stable zinc batteries.

Chen M, Gong Y, Zhao Y, Song Y, Tang Y, Zeng Z Natl Sci Rev. 2024; 11(7):nwae205.

PMID: 39071097 PMC: 11275459. DOI: 10.1093/nsr/nwae205.


References
1.
Jin S, Zhang D, Sharma A, Zhao Q, Shao Y, Chen P . Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth. Small. 2021; 17(33):e2101798. DOI: 10.1002/smll.202101798. View

2.
Zampardi G, La Mantia F . Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat Commun. 2022; 13(1):687. PMC: 8814157. DOI: 10.1038/s41467-022-28381-x. View

3.
Sabin J, Prieto G, Messina P, Ruso J, Hidalgo-Alvarez R, Sarmiento F . On the effect of Ca2+ and La3+ on the colloidal stability of liposomes. Langmuir. 2005; 21(24):10968-75. DOI: 10.1021/la051397t. View

4.
Zheng J, Yin J, Zhang D, Li G, Bock D, Tang T . Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes. Sci Adv. 2020; 6(25):eabb1122. PMC: 7299631. DOI: 10.1126/sciadv.abb1122. View

5.
Kotynska J, Figaszewski Z . Binding of trivalent metal ions (Al, In, La) with phosphatidylcholine liposomal membranes investigated by microelectrophoresis. Eur Phys J E Soft Matter. 2018; 41(5):70. DOI: 10.1140/epje/i2018-11679-6. View