Curcumin Attenuates Vascular Calcification Via the Exosomal MiR-92b-3p/KLF4 Axis
Overview
Affiliations
Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we do not have a good understanding of the molecular mechanisms and effective therapeutic approaches for VC. Curcumin (CUR) is a natural polyphenolic compound that has hypolipidemic, anti-inflammatory, and antioxidant effects on the cardiovascular system. Exosomes are known to have extensive miRNAs for intercellular regulation. This study investigated whether CUR attenuates VC by affecting the secretion of exosomal miRNAs. Calcification models were established and using vitamin D3 and β-glycerophosphate, respectively. Appropriate therapeutic concentrations of CUR were detected on vascular smooth muscle cells (VSMCs) using a cell counting kit 8. Exosomes were extracted by super speed centrifugation from the supernatant of cultured VSMCs and identified by transmission electron microscopy and particle size analysis. Functional and phenotypic experiments were performed to verify the effects of CUR and exosomes secreted by VSMCs treated with CUR on calcified VSMCs. Compared with the calcified control group, both CUR and exosomes secreted by VSMCs after CUR intervention attenuated calcification in VSMCs. Real-Time quantitative PCR (RT-qPCR) experiments showed that miR-92b-3p, which is important for alleviating VC, was expressed highly in both VSMCs and exosomes after CUR intervention. The mimic miR-92b-3p significantly decreased the expression of transcription factor KLF4 and osteogenic factor RUNX2 in VSMCs, while the inhibitor miR-92b-3p had the opposite effect. Based on bioinformatics databases and dual luciferase experiments, the prospective target of miR-92b-3p was determined to be KLF4. Both mRNA and protein of RUNX2 were decreased and increased in VSMCs by inhibiting and overexpressing of KLF4, respectively. In addition, in the rat calcification models, CUR attenuated vitamin D3-induced VC by increasing miR-92b-3p expression and decreasing KLF4 expression in the aorta. In conclusion, our study suggests that CUR attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis.
Sinomenine attenuates uremia vascular calcification by miR-143-5p.
Yu F, Peng Z, Gao N, Tang Z, Liao Z, Zhao S Sci Rep. 2025; 15(1):1798.
PMID: 39806038 PMC: 11730593. DOI: 10.1038/s41598-025-86055-2.
Cao M, Duan Z, Wang X, Gong P, Zhang L, Ruan B Mol Biotechnol. 2024; 66(5):1266-1278.
PMID: 38206528 PMC: 11087368. DOI: 10.1007/s12033-023-01027-z.
Vascular calcification: from the perspective of crosstalk.
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H Mol Biomed. 2023; 4(1):35.
PMID: 37851172 PMC: 10584806. DOI: 10.1186/s43556-023-00146-y.
Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z Front Med (Lausanne). 2023; 10:1193660.
PMID: 37469665 PMC: 10352799. DOI: 10.3389/fmed.2023.1193660.
Hu L, Liu Q, Ou Y, Li D, Wu Y, Li H Ann Med. 2023; 55(1):2195205.
PMID: 37014261 PMC: 10075487. DOI: 10.1080/07853890.2023.2195205.