6.
Wilson D
. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol. 2011; 14(3):259-63.
DOI: 10.1016/j.mib.2011.04.004.
View
7.
Buijs N, Siewers V, Nielsen J
. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol. 2013; 17(3):480-8.
DOI: 10.1016/j.cbpa.2013.03.036.
View
8.
Brunecky R, Alahuhta M, Xu Q, Donohoe B, Crowley M, Kataeva I
. Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science. 2013; 342(6165):1513-6.
DOI: 10.1126/science.1244273.
View
9.
Wenzel M, Schonig I, Berchtold M, Kampfer P, Konig H
. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol. 2002; 92(1):32-40.
DOI: 10.1046/j.1365-2672.2002.01502.x.
View
10.
Brunecky R, Donohoe B, Yarbrough J, Mittal A, Scott B, Ding H
. The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose. Sci Rep. 2017; 7(1):9622.
PMC: 5575103.
DOI: 10.1038/s41598-017-08985-w.
View
11.
Xia Y, Ju F, Fang H, Zhang T
. Mining of novel thermo-stable cellulolytic genes from a thermophilic cellulose-degrading consortium by metagenomics. PLoS One. 2013; 8(1):e53779.
PMC: 3544849.
DOI: 10.1371/journal.pone.0053779.
View
12.
Patel D, Menon D, Patel D, Dave G
. Linkers: A synergistic way for the synthesis of chimeric proteins. Protein Expr Purif. 2021; 191:106012.
DOI: 10.1016/j.pep.2021.106012.
View
13.
Taylor E, Gloster T, Turkenburg J, Vincent F, Brzozowski A, Dupont C
. Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. J Biol Chem. 2006; 281(16):10968-75.
DOI: 10.1074/jbc.M513066200.
View
14.
Sanchez O, Cardona C
. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol. 2007; 99(13):5270-95.
DOI: 10.1016/j.biortech.2007.11.013.
View
15.
Kapoor M, Raj T, Vijayaraj M, Chopra A, Gupta R, Tuli D
. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohydr Polym. 2015; 124:265-73.
DOI: 10.1016/j.carbpol.2015.02.044.
View
16.
Lopes A, Ferreira Filho E, Moreira L
. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol. 2018; 125(3):632-645.
DOI: 10.1111/jam.13923.
View
17.
Rashamuse K, Sanyika Tendai W, Mathiba K, Ngcobo T, Mtimka S, Brady D
. Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular β-1,4-xylanase (GH11). Biotechnol Appl Biochem. 2016; 64(2):174-186.
DOI: 10.1002/bab.1480.
View
18.
Mekasha S, Tuveng T, Askarian F, Choudhary S, Schmidt-Dannert C, Niebisch A
. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. J Biol Chem. 2020; 295(27):9134-9146.
PMC: 7335802.
DOI: 10.1074/jbc.RA120.013040.
View
19.
Wan Q, Parks J, Hanson B, Zoe Fisher S, Ostermann A, Schrader T
. Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography. Proc Natl Acad Sci U S A. 2015; 112(40):12384-9.
PMC: 4603456.
DOI: 10.1073/pnas.1504986112.
View
20.
Sims R, Mabee W, Saddler J, Taylor M
. An overview of second generation biofuel technologies. Bioresour Technol. 2009; 101(6):1570-80.
DOI: 10.1016/j.biortech.2009.11.046.
View