» Articles » PMID: 35654864

A Multiscale X-ray Phase-contrast Tomography Dataset of a Whole Human Left Lung

Overview
Journal Sci Data
Specialty Science
Date 2022 Jun 2
PMID 35654864
Authors
Affiliations
Soon will be listed here.
Abstract

Technological advancements in X-ray imaging using bright and coherent synchrotron sources now allows the decoupling of sample size and resolution while maintaining high sensitivity to the microstructures of soft, partially dehydrated tissues. The continuous developments in multiscale X-ray imaging resulted in hierarchical phase-contrast tomography, a comprehensive approach to address the challenge of organ-scale (up to tens of centimeters) soft tissue imaging with resolution and sensitivity down to the cellular level. Using this technique, we imaged ex vivo an entire human left lung at an isotropic voxel size of 25.08 μm along with local zooms down to 6.05-6.5 μm and 2.45-2.5 μm in voxel size. The high tissue contrast offered by the fourth-generation synchrotron source at the European Synchrotron Radiation Facility reveals the complex multiscale anatomical constitution of the human lung from the macroscopic (centimeter) down to the microscopic (micrometer) scale. The dataset provides comprehensive organ-scale 3D information of the secondary pulmonary lobules and delineates the microstructure of lung nodules with unprecedented detail.

Citing Articles

Deep learning for 3D vascular segmentation in hierarchical phase contrast tomography: a case study on kidney.

Yagis E, Aslani S, Jain Y, Zhou Y, Rahmani S, Brunet J Sci Rep. 2024; 14(1):27258.

PMID: 39516256 PMC: 11549215. DOI: 10.1038/s41598-024-77582-5.


Computer vision applications for the detection or analysis of tuberculosis using digitised human lung tissue images - a systematic review.

Lumamba K, Wells G, Naicker D, Naidoo T, Steyn A, Gwetu M BMC Med Imaging. 2024; 24(1):298.

PMID: 39497049 PMC: 11536899. DOI: 10.1186/s12880-024-01443-w.


Real-world federated learning in radiology: hurdles to overcome and benefits to gain.

Bujotzek M, Akunal U, Denner S, Neher P, Zenk M, Frodl E J Am Med Inform Assoc. 2024; 32(1):193-205.

PMID: 39455061 PMC: 11648732. DOI: 10.1093/jamia/ocae259.


Synchrotron X-ray imaging of soft biological tissues - principles, applications and future prospects.

Albers J, Svetlove A, Duke E J Cell Sci. 2024; 137(20).

PMID: 39440473 PMC: 11529875. DOI: 10.1242/jcs.261953.


3D digital light process bioprinting: Cutting-edge platforms for resolution of organ fabrication.

Jeong Y, Yoo J, Lee S, Kim M Mater Today Bio. 2024; 29:101284.

PMID: 39430572 PMC: 11490710. DOI: 10.1016/j.mtbio.2024.101284.


References
1.
Webb W . Thin-section CT of the secondary pulmonary lobule: anatomy and the image--the 2004 Fleischner lecture. Radiology. 2006; 239(2):322-38. DOI: 10.1148/radiol.2392041968. View

2.
Verleden S, Kirby M, Everaerts S, Vanstapel A, McDonough J, Verbeken E . Small airway loss in the physiologically ageing lung: a cross-sectional study in unused donor lungs. Lancet Respir Med. 2020; 9(2):167-174. DOI: 10.1016/S2213-2600(20)30324-6. View

3.
Longo E, Sancey L, Flenner S, Kubec A, Bonnin A, David C . X-ray Zernike phase contrast tomography: 3D ROI visualization of mm-sized mice organ tissues down to sub-cellular components. Biomed Opt Express. 2020; 11(10):5506-5517. PMC: 7587279. DOI: 10.1364/BOE.396695. View

4.
Liu J, Glaser A, Bera K, True L, Reder N, Eliceiri K . Harnessing non-destructive 3D pathology. Nat Biomed Eng. 2021; 5(3):203-218. PMC: 8118147. DOI: 10.1038/s41551-020-00681-x. View

5.
Katsamenis O, Olding M, Warner J, Chatelet D, Jones M, Sgalla G . X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology. Am J Pathol. 2019; 189(8):1608-1620. PMC: 6680277. DOI: 10.1016/j.ajpath.2019.05.004. View