» Articles » PMID: 35654781

Direct Interaction of a Chaperone-bound Type III Secretion Substrate with the Export Gate

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jun 2
PMID 35654781
Authors
Affiliations
Soon will be listed here.
Abstract

Several gram-negative bacteria employ type III secretion systems (T3SS) to inject effector proteins into eukaryotic host cells directly from the bacterial cytoplasm. The export gate SctV (YscV in Yersinia) binds substrate:chaperone complexes such as YscX:YscY, which are essential for formation of a functional T3SS. Here, we present structures of the YscX:YscY complex alone and bound to nonameric YscV. YscX binds its chaperone YscY at two distinct sites, resembling the heterotrimeric complex of the T3SS needle subunit with its chaperone and co-chaperone. In the ternary complex the YscX N-terminus, which mediates YscX secretion, occupies a binding site within one YscV that is also used by flagellar chaperones, suggesting the interaction's importance for substrate recognition. The YscX C-terminus inserts between protomers of the YscV ring where the stalk protein binds to couple YscV to the T3SS ATPase. This primary YscV-YscX interaction is essential for the formation of a secretion-competent T3SS.

Citing Articles

Function and Global Regulation of Type III Secretion System and Flagella in Entomopathogenic Nematode Symbiotic Bacteria.

Huang X, Li C, Zhang K, Li K, Xie J, Peng Y Int J Mol Sci. 2024; 25(14).

PMID: 39062822 PMC: 11277461. DOI: 10.3390/ijms25147579.


The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15.

Ozden B, Kryshtafovych A, Karaca E Proteins. 2023; 91(12):1636-1657.

PMID: 37861057 PMC: 10873090. DOI: 10.1002/prot.26598.


The Impact of AI-Based Modeling on the Accuracy of Protein Assembly Prediction: Insights from CASP15.

Ozden B, Kryshtafovych A, Karaca E bioRxiv. 2023; .

PMID: 37503072 PMC: 10369898. DOI: 10.1101/2023.07.10.548341.


Protein target highlights in CASP15: Analysis of models by structure providers.

Alexander L, Durairaj J, Kryshtafovych A, Abriata L, Bayo Y, Bhabha G Proteins. 2023; 91(12):1571-1599.

PMID: 37493353 PMC: 10792529. DOI: 10.1002/prot.26545.


Virulence-associated type III secretion systems in Gram-negative bacteria.

Pais S, Kim E, Wagner S Microbiology (Reading). 2023; 169(6).

PMID: 37310005 PMC: 10333785. DOI: 10.1099/mic.0.001328.


References
1.
Dewoody R, Merritt P, Marketon M . Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol. 2013; 3:4. PMC: 3565153. DOI: 10.3389/fcimb.2013.00004. View

2.
Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A . Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science. 1998; 280(5363):602-5. DOI: 10.1126/science.280.5363.602. View

3.
Bai F, Li Z, Umezawa A, Terada N, Jin S . Bacterial type III secretion system as a protein delivery tool for a broad range of biomedical applications. Biotechnol Adv. 2018; 36(2):482-493. PMC: 7145356. DOI: 10.1016/j.biotechadv.2018.01.016. View

4.
Portaliou A, Tsolis K, Loos M, Zorzini V, Economou A . Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem Sci. 2015; 41(2):175-189. DOI: 10.1016/j.tibs.2015.09.005. View

5.
Akeda Y, Galan J . Chaperone release and unfolding of substrates in type III secretion. Nature. 2005; 437(7060):911-5. DOI: 10.1038/nature03992. View