6.
Thompson T
. Optimization of metabolic stability as a goal of modern drug design. Med Res Rev. 2001; 21(5):412-49.
DOI: 10.1002/med.1017.
View
7.
Al-Majed A, Belal F, Julkhuf S, El-Subbagh H
. Penicillamine: physical profile. Profiles Drug Subst Excip Relat Methodol. 2012; 32:119-30.
DOI: 10.1016/S0099-5428(05)32004-1.
View
8.
Cheng Z, Shurina B, Bethel C, Thomas P, Marshall S, Thomas C
. A Single Salt Bridge in VIM-20 Increases Protein Stability and Antibiotic Resistance under Low-Zinc Conditions. mBio. 2019; 10(6).
PMC: 6867895.
DOI: 10.1128/mBio.02412-19.
View
9.
Huang T, Szekacs A, Uematsu T, Kuwano E, Parkinson A, Hammock B
. Hydrolysis of carbonates, thiocarbonates, carbamates, and carboxylic esters of alpha-naphthol, beta-naphthol, and p-nitrophenol by human, rat, and mouse liver carboxylesterases. Pharm Res. 1993; 10(5):639-48.
DOI: 10.1023/a:1018987111362.
View
10.
Sainlos M, Imperiali B
. Tools for investigating peptide-protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nat Protoc. 2007; 2(12):3201-9.
DOI: 10.1038/nprot.2007.442.
View
11.
Dortet L, Poirel L, Nordmann P
. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014; 2014:249856.
PMC: 3984790.
DOI: 10.1155/2014/249856.
View
12.
Lauretti L, Riccio M, Mazzariol A, Cornaglia G, Amicosante G, Fontana R
. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999; 43(7):1584-90.
PMC: 89328.
DOI: 10.1128/AAC.43.7.1584.
View
13.
Dadgostar P
. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. 2020; 12:3903-3910.
PMC: 6929930.
DOI: 10.2147/IDR.S234610.
View
14.
Raushel F, Holden H
. Phosphotriesterase: an enzyme in search of its natural substrate. Adv Enzymol Relat Areas Mol Biol. 2000; 74:51-93.
DOI: 10.1002/9780470123201.ch2.
View
15.
Aitha M, Marts A, Bergstrom A, Moller A, Moritz L, Turner L
. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Biochemistry. 2014; 53(46):7321-31.
PMC: 4245990.
DOI: 10.1021/bi500916y.
View
16.
Mehta R, Rivera D, Reilley D, Tan D, Thomas P, Hinojosa A
. Visualizing the Dynamic Metalation State of New Delhi Metallo-β-lactamase-1 in Bacteria Using a Reversible Fluorescent Probe. J Am Chem Soc. 2021; 143(22):8314-8323.
PMC: 8230704.
DOI: 10.1021/jacs.1c00290.
View
17.
Cheng Z, Bethel C, Thomas P, Shurina B, Alao J, Thomas C
. Carbapenem Use Is Driving the Evolution of Imipenemase 1 Variants. Antimicrob Agents Chemother. 2021; 65(4).
PMC: 8097420.
DOI: 10.1128/AAC.01714-20.
View
18.
Cheng Z, Thomas P, Ju L, Bergstrom A, Mason K, Clayton D
. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J Biol Chem. 2018; 293(32):12606-12618.
PMC: 6093243.
DOI: 10.1074/jbc.RA118.003835.
View
19.
LARAKI N, Galleni M, Thamm I, Riccio M, Amicosante G, Frere J
. Structure of In31, a blaIMP-containing Pseudomonas aeruginosa integron phyletically related to In5, which carries an unusual array of gene cassettes. Antimicrob Agents Chemother. 1999; 43(4):890-901.
PMC: 89222.
DOI: 10.1128/AAC.43.4.890.
View
20.
Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H
. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994; 38(1):71-8.
PMC: 284399.
DOI: 10.1128/AAC.38.1.71.
View