» Articles » PMID: 35651615

Gene Biomarkers Related to Th17 Cells in Macular Edema of Diabetic Retinopathy: Cutting-Edge Comprehensive Bioinformatics Analysis and Validation

Overview
Journal Front Immunol
Date 2022 Jun 2
PMID 35651615
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Previous studies have shown that T-helper 17 (Th17) cell-related cytokines are significantly increased in the vitreous of proliferative diabetic retinopathy (PDR), suggesting that Th17 cells play an important role in the inflammatory response of diabetic retinopathy (DR), but its cell infiltration and gene correlation in the retina of DR, especially in diabetic macular edema (DME), have not been studied.

Methods: The dataset GSE160306 was downloaded from the Gene Expression Omnibus (GEO) database, which contains 9 NPDR samples and 10 DME samples. ImmuCellAI algorithm was used to estimate the abundance of Th17 cells in 24 kinds of infiltrating immune cells. The differentially expressed Th17 related genes (DETh17RGs) between NPDR and DME were documented by difference analysis and correlation analysis. Through aggregate analyses such as gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis, a protein-protein interaction (PPI) network was constructed to analyze the potential function of DETh17RGs. CytoHubba plug-in algorithm, Lasso regression analysis and support vector machine recursive feature elimination (SVM-RFE) were implemented to comprehensively identify Hub DETh17RGs. The expression archetypes of Hub DETh17RGs were further verified in several other independent datasets related to DR. The Th17RG score was defined as the genetic characterization of six Hub DETh17RGs using the GSVA sample score method, which was used to distinguish early and advanced diabetic nephropathy (DN) as well as normal and diabetic nephropathy. Finally, real-time quantitative PCR (qPCR) was implemented to verify the transcription levels of Hub DETh17RGs in the STZ-induced DR model mice (C57BL/6J).

Results: 238 DETh17RGs were identified, of which 212 genes were positively correlated while only 26 genes were negatively correlated. Six genes (CD44, CDC42, TIMP1, BMP7, RHOC, FLT1) were identified as Hub DETh17RGs. Because DR and DN have a strong correlation in clinical practice, the verification of multiple independent datasets related to DR and DN proved that Hub DETh17RGs can not only distinguish PDR patients from normal people, but also distinguish DN patients from normal people. It can also identify the initial and advanced stages of the two diseases (NPDR vs DME, Early DN vs Advanced DN). Except for CDC42 and TIMP1, the qPCR transcription levels and trends of other Hub DETh17RGs in STZ-induced DR model mice were consistent with the human transcriptome level in this study.

Conclusion: This study will improve our understanding of Th17 cell-related molecular mechanisms in the progression of DME. At the same time, it also provides an updated basis for the molecular mechanism of Th17 cell crosstalk in the eye and kidney in diabetes.

Citing Articles

Development and validation of potential molecular subtypes and signatures of thyroid eye disease based on angiogenesis-related gene analysis.

Wu Z, Peng J, Long X, Tan K, Yao X, Peng Q BMC Pharmacol Toxicol. 2025; 26(1):53.

PMID: 40065401 PMC: 11892296. DOI: 10.1186/s40360-025-00880-9.


Bioinformatics analysis and validation of novel biomarkers and competitive endogenous RNA networks involved in pyroptosis in diabetic nephropathy.

Wu S, Yao L, Zhang W, Chen P, Jiang J, Ma Y Sci Rep. 2025; 15(1):5530.

PMID: 39953123 PMC: 11829041. DOI: 10.1038/s41598-025-87854-3.


Impact of hyperglycemia on immune cell function: a comprehensive review.

Lee H, Kim M, Lee I, Hong C, Jeon J Diabetol Int. 2024; 15(4):745-760.

PMID: 39469566 PMC: 11512986. DOI: 10.1007/s13340-024-00741-6.


Integrated machine learning and Mendelian randomization reveal PALMD as a prognostic biomarker for nonspecific orbital inflammation.

Wu Z, Liu X, Tan K, Yao X, Peng Q Sci Rep. 2024; 14(1):24020.

PMID: 39402101 PMC: 11473641. DOI: 10.1038/s41598-024-74409-1.


Deciphering the role of HLF in idiopathic orbital inflammation: integrative analysis via bioinformatics and machine learning techniques.

Wu Z, Song Q, Liu M, Hu Y, Peng X, Zhang Z Sci Rep. 2024; 14(1):19346.

PMID: 39164324 PMC: 11336107. DOI: 10.1038/s41598-024-68890-x.


References
1.
Nakagawa T, Kosugi T, Haneda M, Rivard C, Long D . Abnormal angiogenesis in diabetic nephropathy. Diabetes. 2009; 58(7):1471-8. PMC: 2699857. DOI: 10.2337/db09-0119. View

2.
Uemura A, Fruttiger M, DAmore P, De Falco S, Joussen A, Sennlaub F . VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021; 84:100954. PMC: 8385046. DOI: 10.1016/j.preteyeres.2021.100954. View

3.
Cao X, Gong X, Ma X . Diabetic Nephropathy versus Diabetic Retinopathy in a Chinese Population: A Retrospective Study. Med Sci Monit. 2019; 25:6446-6453. PMC: 6727671. DOI: 10.12659/MSM.915917. View

4.
Park H, Lee Y, Cho A, Han C, Noh J, Shin Y . Diabetic retinopathy is a prognostic factor for progression of chronic kidney disease in the patients with type 2 diabetes mellitus. PLoS One. 2019; 14(7):e0220506. PMC: 6663021. DOI: 10.1371/journal.pone.0220506. View

5.
Mizukawa B, OBrien E, Moreira D, Wunderlich M, Hochstetler C, Duan X . The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation. Blood. 2017; 130(11):1336-1346. PMC: 5600140. DOI: 10.1182/blood-2016-12-758458. View