» Articles » PMID: 35645602

A Statistical Approach to Knot Confinement Via Persistent Homology

Overview
Date 2022 Jun 1
PMID 35645602
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, we study how randomly generated knots occupy a volume of space using topological methods. To this end, we consider the evolution of the first homology of an immersed metric neighbourhood of a knot's embedding for growing radii. Specifically, we extract features from the persistent homology (PH) of the Vietoris-Rips complexes built from point clouds associated with knots. Statistical analysis of our data shows the existence of increasing correlations between geometric quantities associated with the embedding and PH-based features, as a function of the knots' lengths. We further study the variation of these correlations for different knot types. Finally, this framework also allows us to define a simple notion of deviation from ideal configurations of knots.

Citing Articles

Homology of homologous knotted proteins.

Benjamin K, Mukta L, Moryoussef G, Uren C, Harrington H, Tillmann U J R Soc Interface. 2023; 20(201):20220727.

PMID: 37122282 PMC: 10130707. DOI: 10.1098/rsif.2022.0727.

References
1.
Shimamura M, Deguchi T . Finite-size and asymptotic behaviors of the gyration radius of knotted cylindrical self-avoiding polygons. Phys Rev E Stat Nonlin Soft Matter Phys. 2002; 65(5 Pt 1):051802. DOI: 10.1103/PhysRevE.65.051802. View

2.
Purohit P, Kondev J, Phillips R . Mechanics of DNA packaging in viruses. Proc Natl Acad Sci U S A. 2003; 100(6):3173-8. PMC: 404299. DOI: 10.1073/pnas.0737893100. View

3.
Arsuaga J, Vazquez M, Trigueros S, Sumners D, Roca J . Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc Natl Acad Sci U S A. 2002; 99(8):5373-7. PMC: 122776. DOI: 10.1073/pnas.032095099. View

4.
Dabrowski-Tumanski P, Rubach P, Niemyska W, Gren B, Sulkowska J . Topoly: Python package to analyze topology of polymers. Brief Bioinform. 2020; 22(3). PMC: 8138882. DOI: 10.1093/bib/bbaa196. View

5.
Otter N, Porter M, Tillmann U, Grindrod P, Harrington H . A roadmap for the computation of persistent homology. EPJ Data Sci. 2020; 6(1):17. PMC: 6979512. DOI: 10.1140/epjds/s13688-017-0109-5. View