» Articles » PMID: 35632146

Applying Machine Learning to Finger Movements Using Electromyography and Visualization in Opensim

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2022 May 28
PMID 35632146
Authors
Affiliations
Soon will be listed here.
Abstract

Electromyographic signals have been used with low-degree-of-freedom prostheses, and recently with multifunctional prostheses. Currently, they are also being used as inputs in the human-computer interface that controls interaction through hand gestures. Although there is a gap between academic publications on the control of an upper-limb prosthesis developed in laboratories and its service in the natural environment, there are attempts to achieve easier control using multiple muscle signals. This work contributes to this, using a database and biomechanical simulation software, both open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers and their execution in real time. Fifteen predefined finger movements of the hand were identified using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized movements of the database were modeled with Opensim for visualization. Combinations of two preprocessing methods-the forward sequential selection method and the feature normalization method-were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore, the classifier with the best recognition result was redesigned into a new feature space using the sparse matrix algorithm to improve it, and to determine which features can be eliminated without degrading the classification. The classifiers yielded promising results-the quadratic discriminant being the best, achieving an average recognition rate for each individual considered of 96.16%, and with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study ends with the visual analysis under Opensim of the classified movements, in which the usefulness of this simulation tool is appreciated by revealing the muscular participation, which can be useful during the design of a multifunctional prosthesis.

Citing Articles

Predicting stress levels using physiological data: Real-time stress prediction models utilizing wearable devices.

Lazarou E, Exarchos T AIMS Neurosci. 2024; 11(2):76-102.

PMID: 38988886 PMC: 11230864. DOI: 10.3934/Neuroscience.2024006.


On the Applications of EMG Sensors and Signals.

Kamavuako E Sensors (Basel). 2022; 22(20).

PMID: 36298317 PMC: 9611382. DOI: 10.3390/s22207966.


Evaluating Muscle Synergies With EMG Data and Physics Simulation in the Neurorobotics Platform.

Feldotto B, Soare C, Knoll A, Sriya P, Astill S, de Kamps M Front Neurorobot. 2022; 16:856797.

PMID: 35903555 PMC: 9315385. DOI: 10.3389/fnbot.2022.856797.

References
1.
Shahzad W, Ayaz Y, Khan M, Naseer N, Khan M . Enhanced Performance for Multi-Forearm Movement Decoding Using Hybrid IMU-sEMG Interface. Front Neurorobot. 2019; 13:43. PMC: 6617522. DOI: 10.3389/fnbot.2019.00043. View

2.
Christov I, Raikova R, Angelova S . Separation of electrocardiographic from electromyographic signals using dynamic filtration. Med Eng Phys. 2018; 57:1-10. DOI: 10.1016/j.medengphy.2018.04.007. View

3.
Rodriguez-Falces J, Neyroud D, Place N . Influence of inter-electrode distance, contraction type, and muscle on the relationship between the sEMG power spectrum and contraction force. Eur J Appl Physiol. 2014; 115(3):627-38. DOI: 10.1007/s00421-014-3041-4. View

4.
Besomi M, Hodges P, van Dieen J, Carson R, Clancy E, Disselhorst-Klug C . Consensus for experimental design in electromyography (CEDE) project: Electrode selection matrix. J Electromyogr Kinesiol. 2019; 48:128-144. DOI: 10.1016/j.jelekin.2019.07.008. View

5.
Khushaba R, Takruri M, Valls Miro J, Kodagoda S . Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw. 2014; 55:42-58. DOI: 10.1016/j.neunet.2014.03.010. View