» Articles » PMID: 35632005

Bone Mineralization in Electrospun-Based Bone Tissue Engineering

Overview
Publisher MDPI
Date 2022 May 28
PMID 35632005
Authors
Affiliations
Soon will be listed here.
Abstract

Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.

Citing Articles

Improved Biomineralization Using Cellulose Acetate/Magnetic Nanoparticles Composite Membranes.

Oprea M, Pandele A, Nechifor A, Nicoara A, Antoniac I, Semenescu A Polymers (Basel). 2025; 17(2).

PMID: 39861281 PMC: 11768280. DOI: 10.3390/polym17020209.


Simultaneous Coating of Electrospun Nanofibers with Bioactive Molecules for Stem Cell Osteogenesis .

Zahiri-Toosi M, Zargar S, Seyedjafari E, Saberian M, Ahmadi M Cell J. 2024; 26(2):130-138.

PMID: 38459730 PMC: 10924835. DOI: 10.22074/cellj.2024.2008921.1388.


Preparation and Characterization of a Novel Tragacanth Gum/Chitosan/Sr-Nano-Hydroxyapatite Composite Membrane.

Tang S, Jiang L, Jiang Z, Ma Y, Zhang Y, Su S Polymers (Basel). 2023; 15(13).

PMID: 37447587 PMC: 10346143. DOI: 10.3390/polym15132942.


Hydrothermally reinforcing hydroxyaptatite and bioactive glass on carbon nanofiber scafold for bone tissue engineering.

Abd El-Aziz A, Serag E, Kenawy M, El-Maghraby A, Kandil S Front Bioeng Biotechnol. 2023; 11:1170097.

PMID: 37292092 PMC: 10245555. DOI: 10.3389/fbioe.2023.1170097.


A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges.

Abdelaziz A, Nageh H, Abdo S, Abdalla M, Amer A, Abdal-Hay A Bioengineering (Basel). 2023; 10(2).

PMID: 36829698 PMC: 9952306. DOI: 10.3390/bioengineering10020204.


References
1.
Clarke B . Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008; 3 Suppl 3:S131-9. PMC: 3152283. DOI: 10.2215/CJN.04151206. View

2.
Udomluck N, Koh W, Lim D, Park H . Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. Int J Mol Sci. 2019; 21(1). PMC: 6981959. DOI: 10.3390/ijms21010099. View

3.
Chakraborty P, Adhikari J, Saha P . Facile fabrication of electrospun regenerated cellulose nanofiber scaffold for potential bone-tissue engineering application. Int J Biol Macromol. 2018; 122:644-652. DOI: 10.1016/j.ijbiomac.2018.10.216. View

4.
Colige A, Vandenberghe I, Thiry M, Lambert C, Van Beeumen J, Li S . Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem. 2001; 277(8):5756-66. DOI: 10.1074/jbc.M105601200. View

5.
Tu K, Lie J, Wan C, Cameron M, Austel A, Nguyen J . Osteoporosis: A Review of Treatment Options. P T. 2018; 43(2):92-104. PMC: 5768298. View