» Articles » PMID: 35624211

Single-cell RNA Sequencing Reveals Evolution of Immune Landscape During Glioblastoma Progression

Abstract

Glioblastoma (GBM) is an incurable primary malignant brain cancer hallmarked with a substantial protumorigenic immune component. Knowledge of the GBM immune microenvironment during tumor evolution and standard of care treatments is limited. Using single-cell transcriptomics and flow cytometry, we unveiled large-scale comprehensive longitudinal changes in immune cell composition throughout tumor progression in an epidermal growth factor receptor-driven genetic mouse GBM model. We identified subsets of proinflammatory microglia in developing GBMs and anti-inflammatory macrophages and protumorigenic myeloid-derived suppressors cells in end-stage tumors, an evolution that parallels breakdown of the blood-brain barrier and extensive growth of epidermal growth factor receptor GBM cells. A similar relationship was found between microglia and macrophages in patient biopsies of low-grade glioma and GBM. Temozolomide decreased the accumulation of myeloid-derived suppressor cells, whereas concomitant temozolomide irradiation increased intratumoral GranzymeB CD8T cells but also increased CD4 regulatory T cells. These results provide a comprehensive and unbiased immune cellular landscape and its evolutionary changes during GBM progression.

Citing Articles

Identification of Prognostic Genes Related to Cell Senescence and Lipid Metabolism in Glioblastoma Based on Transcriptome and Single-Cell RNA-Seq Data.

Li Q, Liu H Int J Mol Sci. 2025; 26(5).

PMID: 40076502 PMC: 11899969. DOI: 10.3390/ijms26051875.


Analyze the Diversity and Function of Immune Cells in the Tumor Microenvironment From the Perspective of Single-Cell RNA Sequencing.

Ma L, Luan Y, Lu L Cancer Med. 2025; 14(5):e70622.

PMID: 40062730 PMC: 11891933. DOI: 10.1002/cam4.70622.


Landscape of four different stages of human gastric cancer revealed by single-cell sequencing.

Tang X, Xu C, Li N, Zhang J, Tang Y World J Gastrointest Oncol. 2025; 17(2):97125.

PMID: 39958562 PMC: 11756019. DOI: 10.4251/wjgo.v17.i2.97125.


Glioblastoma drives protease-independent extracellular matrix invasion of microglia.

Chang C, Bale A, Bhargava R, Harley B Mater Today Bio. 2025; 31:101475.

PMID: 39896278 PMC: 11787038. DOI: 10.1016/j.mtbio.2025.101475.


Immunocompetent murine glioblastoma stem-like cell models exhibiting distinct phenotypes.

Kardani K, Ghouse S, Din Abdul Jabbar M, Rajasubramanian N, Sanchez Gil J, Stemmer-Rachamimov A Neurooncol Adv. 2025; 7(1):vdae215.

PMID: 39896074 PMC: 11783566. DOI: 10.1093/noajnl/vdae215.


References
1.
Brennan C, Verhaak R, McKenna A, Campos B, Noushmehr H, Salama S . The somatic genomic landscape of glioblastoma. Cell. 2013; 155(2):462-77. PMC: 3910500. DOI: 10.1016/j.cell.2013.09.034. View

2.
Acquaviva J, Jun H, Lessard J, Ruiz R, Zhu H, Donovan M . Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation. Cancer Res. 2011; 71(23):7198-206. PMC: 3228869. DOI: 10.1158/0008-5472.CAN-11-1514. View

3.
Jun H, Acquaviva J, Chi D, Lessard J, Zhu H, Woolfenden S . Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene. 2011; 31(25):3039-50. PMC: 3774279. DOI: 10.1038/onc.2011.474. View

4.
Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl R . Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci U S A. 2009; 106(8):2712-6. PMC: 2650331. DOI: 10.1073/pnas.0813314106. View

5.
Yeo A, Jun H, Appleman V, Zhang P, Varma H, Sarkaria J . EGFRvIII tumorigenicity requires PDGFRA co-signaling and reveals therapeutic vulnerabilities in glioblastoma. Oncogene. 2021; 40(15):2682-2696. PMC: 9159289. DOI: 10.1038/s41388-021-01721-9. View