» Articles » PMID: 35594396

Structural Insights into Galanin Receptor Signaling

Overview
Specialty Science
Date 2022 May 20
PMID 35594396
Authors
Affiliations
Soon will be listed here.
Abstract

Galanin is a biologically active neuropeptide, and functions through three distinct G protein–coupled receptors (GPCRs), namely GALR1, GALR2, and GALR3. GALR signaling plays important roles in regulating various physiological processes such as energy metabolism, neuropathic pain, epileptic activity, and sleep homeostasis. GALR1 and GALR3 signal through the Gi/o pathway, whereas GALR2 signals mainly through the Gq/11 pathway. However, the molecular basis for galanin recognition and G protein selectivity of GALRs remains poorly understood. Here, we report the cryoelectron microscopy structures of the GALR1-Go and the GALR2-Gq complexes bound to the endogenous ligand galanin or spexin. The galanin peptide mainly adopts an alpha helical structure, which binds at the extracellular vestibule of the receptors, nearly parallel to the membrane plane without penetrating deeply into the receptor core. Structural analysis combined with functional studies reveals important structural determinants for the G protein selectivity of GALRs as well as other class A GPCRs. In addition, we show that the zinc ion is a negative allosteric regulator of GALR1 but not GALR2. Our studies provide insight into the mechanisms of G protein selectivity of GPCRs and highlight a potential function of the neuromodulator zinc ion as a modulator of GPCR signaling in the central nervous system.

Citing Articles

Effects of celastrol on the heart and liver galaninergic system expression in a mouse model of Western-type diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis.

Canova N, Sipkova J, Arora M, Pavlikova Z, Kucera T, Seda O Front Pharmacol. 2025; 16:1476994.

PMID: 39968178 PMC: 11832397. DOI: 10.3389/fphar.2025.1476994.


Neuropeptides: The Evergreen Jack-of-All-Trades in Neuronal Circuit Development and Regulation.

Hevesi Z, Hokfelt T, Harkany T Bioessays. 2024; 47(3):e202400238.

PMID: 39723681 PMC: 11848124. DOI: 10.1002/bies.202400238.


Specific binding of GPR174 by endogenous lysophosphatidylserine leads to high constitutive G signaling.

Nie Y, Qiu Z, Chen S, Chen Z, Song X, Ma Y Nat Commun. 2023; 14(1):5901.

PMID: 37737235 PMC: 10516915. DOI: 10.1038/s41467-023-41654-3.


Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4).

Chen Y, Zhou Q, Wang J, Xu Y, Wang Y, Yan J Nat Commun. 2023; 14(1):492.

PMID: 36717591 PMC: 9886975. DOI: 10.1038/s41467-023-36182-z.

References
1.
Anderson C, Radford R, Zastrow M, Zhang D, Apfel U, Lippard S . Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A. 2015; 112(20):E2705-14. PMC: 4443361. DOI: 10.1073/pnas.1503348112. View

2.
Branchek T, Smith K, Gerald C, Walker M . Galanin receptor subtypes. Trends Pharmacol Sci. 2000; 21(3):109-17. DOI: 10.1016/s0165-6147(00)01446-2. View

3.
Sanchez-Garcia R, Gomez-Blanco J, Cuervo A, Carazo J, Sorzano C, Vargas J . DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol. 2021; 4(1):874. PMC: 8282847. DOI: 10.1038/s42003-021-02399-1. View

4.
Olsen R, DiBerto J, English J, Glaudin A, Krumm B, Slocum S . TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat Chem Biol. 2020; 16(8):841-849. PMC: 7648517. DOI: 10.1038/s41589-020-0535-8. View

5.
Floren A, Land T, Langel U . Galanin receptor subtypes and ligand binding. Neuropeptides. 2001; 34(6):331-7. DOI: 10.1054/npep.2000.0808. View