» Articles » PMID: 35590109

Single-nucleus Chromatin Accessibility Profiling Highlights Regulatory Mechanisms of Coronary Artery Disease Risk

Abstract

Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences across cell types. Genome-wide association studies have identified over 200 loci associated with CAD, where the majority of risk variants reside in noncoding DNA sequences impacting cis-regulatory elements. Here, we applied single-nucleus assay for transposase-accessible chromatin with sequencing to profile 28,316 nuclei across coronary artery segments from 41 patients with varying stages of CAD, which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all cells, identified cell-type-specific elements and transcription factors, and prioritized functional CAD risk variants. We identified elements in smooth muscle cell transition states (for example, fibromyocytes) and functional variants predicted to alter smooth muscle cell- and macrophage-specific regulation of MRAS (3q22) and LIPA (10q23), respectively. We further nominated key driver transcription factors such as PRDM16 and TBX2. Together, this single-nucleus atlas provides a critical step towards interpreting regulatory mechanisms across the continuum of CAD risk.

Citing Articles

Comprehensive analysis of non-coding RNA-mediated endothelial cell-specific regulatory circuits in coronary artery disease risk.

Huang B, Lai Z, Wang X, Zhang Q, Hu T, Yu F Front Genet. 2025; 16:1559798.

PMID: 40061128 PMC: 11886895. DOI: 10.3389/fgene.2025.1559798.


PRDM16 controls smooth muscle cell fate in atherosclerosis.

Tan J, Cheng L, Calhoun R, Weller A, Drareni K, Fong S bioRxiv. 2025; .

PMID: 40027729 PMC: 11870537. DOI: 10.1101/2025.02.19.639186.


ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants.

Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S bioRxiv. 2025; .

PMID: 39829783 PMC: 11741299. DOI: 10.1101/2024.12.25.630221.


Monitoring of single-nucleus chromatin landscape of ischemic stroke in mouse cerebral cortex across time.

Zhang R, Guo S, Zhou J, Lin X, Wang Y, Wang Y Sci Data. 2025; 12(1):47.

PMID: 39794343 PMC: 11724039. DOI: 10.1038/s41597-025-04367-4.


Depth-corrected multi-factor dissection of chromatin accessibility for scATAC-seq data with PACS.

Miao Z, Wang J, Park K, Kuang D, Kim J Nat Commun. 2025; 16(1):401.

PMID: 39757254 PMC: 11701134. DOI: 10.1038/s41467-024-55580-5.


References
1.
Calderon D, Nguyen M, Mezger A, Kathiria A, Muller F, Nguyen V . Landscape of stimulation-responsive chromatin across diverse human immune cells. Nat Genet. 2019; 51(10):1494-1505. PMC: 6858557. DOI: 10.1038/s41588-019-0505-9. View

2.
Corces M, Trevino A, Hamilton E, Greenside P, Sinnott-Armstrong N, Vesuna S . An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017; 14(10):959-962. PMC: 5623106. DOI: 10.1038/nmeth.4396. View

3.
Nott A, Holtman I, Coufal N, Schlachetzki J, Yu M, Hu R . Brain cell type-specific enhancer-promoter interactome maps and diseaserisk association. Science. 2019; 366(6469):1134-1139. PMC: 7028213. DOI: 10.1126/science.aay0793. View

4.
Lin M, Chen T, Leaf E, Speer M, Giachelli C . Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice. Am J Pathol. 2015; 185(7):1958-69. PMC: 4484217. DOI: 10.1016/j.ajpath.2015.03.020. View

5.
Virmani R, Kolodgie F, Burke A, Finn A, Gold H, Tulenko T . Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005; 25(10):2054-61. DOI: 10.1161/01.ATV.0000178991.71605.18. View