» Articles » PMID: 35589753

A Bio-functional Polymer That Prevents Retinal Scarring Through Modulation of NRF2 Signalling Pathway

Abstract

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.

Citing Articles

The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update.

Darabus D, Darabus R, Munteanu M Biomedicines. 2025; 13(1).

PMID: 39857689 PMC: 11763247. DOI: 10.3390/biomedicines13010105.


Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways.

Jiang Y, Wen X, Jian X, Chen Q, Li Y Int J Mol Med. 2025; 55(3.

PMID: 39791203 PMC: 11758894. DOI: 10.3892/ijmm.2025.5486.


Advances in retinal pigment epithelial cell transplantation for retinal degenerative diseases.

Liu H, Huang S, Lingam G, Kai D, Su X, Liu Z Stem Cell Res Ther. 2024; 15(1):390.

PMID: 39482729 PMC: 11526680. DOI: 10.1186/s13287-024-04007-5.


Exosomes-based dual drug-loaded nanocarrier for targeted and multiple proliferative vitreoretinopathy therapy.

Zhao P, Wang J, Huang H, Chen Z, Wang H, Lin Q Regen Biomater. 2024; 11:rbae081.

PMID: 39040514 PMC: 11262591. DOI: 10.1093/rb/rbae081.


DUSP5 regulated by YTHDF1-mediated m6A modification promotes epithelial-mesenchymal transition and EGFR-TKI resistance via the TGF-β/Smad signaling pathway in lung adenocarcinoma.

Fan W, Xing Y, Yan S, Liu W, Ning J, Tian F Cancer Cell Int. 2024; 24(1):208.

PMID: 38872157 PMC: 11177384. DOI: 10.1186/s12935-024-03382-6.


References
1.
Pastor J . Proliferative vitreoretinopathy: an overview. Surv Ophthalmol. 1998; 43(1):3-18. DOI: 10.1016/s0039-6257(98)00023-x. View

2.
Yang S, Li H, Li M, Wang F . Mechanisms of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Discov Med. 2015; 20(110):207-17. View

3.
Mudhar H . A brief review of the histopathology of proliferative vitreoretinopathy (PVR). Eye (Lond). 2019; 34(2):246-250. PMC: 7002513. DOI: 10.1038/s41433-019-0724-4. View

4.
Feist Jr R, King J, Morris R, Witherspoon C, Guidry C . Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 2013; 252(2):347-57. DOI: 10.1007/s00417-013-2531-0. View

5.
Glaser B, CARDIN A, BISCOE B . Proliferative vitreoretinopathy. The mechanism of development of vitreoretinal traction. Ophthalmology. 1987; 94(4):327-32. DOI: 10.1016/s0161-6420(87)33443-8. View