Rosas Bringas F, Yin Z, Yao Y, Boudeman J, Ollivaud S, Chang M
Proc Natl Acad Sci U S A. 2024; 121(49):e2407314121.
PMID: 39602274
PMC: 11626172.
DOI: 10.1073/pnas.2407314121.
Zamarreno J, Munoz S, Alonso-Rodriguez E, Alcala M, Rodriguez S, Bermejo R
Nat Commun. 2024; 15(1):8183.
PMID: 39294185
PMC: 11411133.
DOI: 10.1038/s41467-024-52542-9.
Shi G, Yang C, Wu J, Lei Y, Hu J, Feng J
Sci Adv. 2024; 10(32):eado1739.
PMID: 39121223
PMC: 11313866.
DOI: 10.1126/sciadv.ado1739.
Koussa N, Smith D
G3 (Bethesda). 2021; 11(8).
PMID: 34849819
PMC: 8496332.
DOI: 10.1093/g3journal/jkab205.
Kumamoto S, Nishiyama A, Chiba Y, Miyashita R, Konishi C, Azuma Y
Nucleic Acids Res. 2021; 49(9):5003-5016.
PMID: 33872376
PMC: 8136790.
DOI: 10.1093/nar/gkab269.
Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication.
Bainbridge L, Teague R, Doherty A
Nucleic Acids Res. 2021; 49(9):4831-4847.
PMID: 33744934
PMC: 8136793.
DOI: 10.1093/nar/gkab176.
One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA.
Nava G, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F
Int J Mol Sci. 2020; 21(5).
PMID: 32131532
PMC: 7084774.
DOI: 10.3390/ijms21051706.
DNA Replication Through Strand Displacement During Lagging Strand DNA Synthesis in .
Giannattasio M, Branzei D
Genes (Basel). 2019; 10(2).
PMID: 30795600
PMC: 6409922.
DOI: 10.3390/genes10020167.
The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components.
Campbell I, Zhou X, Amon A
Elife. 2019; 8.
PMID: 30672733
PMC: 6363386.
DOI: 10.7554/eLife.41139.
Near-continuously synthesized leading strands in are broken by ribonucleotide excision.
Cronan G, Kouzminova E, Kuzminov A
Proc Natl Acad Sci U S A. 2019; 116(4):1251-1260.
PMID: 30617079
PMC: 6347710.
DOI: 10.1073/pnas.1814512116.
Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replication in vivo.
Kahli M, Osmundson J, Yeung R, Smith D
Nucleic Acids Res. 2018; 47(4):1814-1822.
PMID: 30541106
PMC: 6393292.
DOI: 10.1093/nar/gky1242.
RNA metabolism is the primary target of formamide in vivo.
Hoyos-Manchado R, Reyes-Martin F, Rallis C, Gamero-Estevez E, Rodriguez-Gomez P, Quintero-Blanco J
Sci Rep. 2017; 7(1):15895.
PMID: 29162938
PMC: 5698326.
DOI: 10.1038/s41598-017-16291-8.
Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.
Arakawa H, Iliakis G
Genes (Basel). 2015; 6(2):385-98.
PMID: 26110316
PMC: 4488670.
DOI: 10.3390/genes6020385.
Detection and Sequencing of Okazaki Fragments in S. cerevisiae.
Smith D, Yadav T, Whitehouse I
Methods Mol Biol. 2015; 1300:141-53.
PMID: 25916711
PMC: 4860728.
DOI: 10.1007/978-1-4939-2596-4_10.
Lagging-strand replication shapes the mutational landscape of the genome.
Reijns M, Kemp H, Ding J, de Proce S, Jackson A, Taylor M
Nature. 2015; 518(7540):502-506.
PMID: 25624100
PMC: 4374164.
DOI: 10.1038/nature14183.
Break-induced replication requires DNA damage-induced phosphorylation of Pif1 and leads to telomere lengthening.
Vasianovich Y, Harrington L, Makovets S
PLoS Genet. 2014; 10(10):e1004679.
PMID: 25329304
PMC: 4199488.
DOI: 10.1371/journal.pgen.1004679.
Newly synthesised DNA of high molecular weight in the yeast Saccharomyces cerevisiae.
Johnston L
Curr Genet. 2013; 3(3):229-33.
PMID: 24190135
DOI: 10.1007/BF00429825.
The effect of hydroxyurea on the mechanism of DNA synthesis in the yeast Saccharomyces cerevisiae.
Johnston L
Curr Genet. 2013; 2(3):175-80.
PMID: 24189906
DOI: 10.1007/BF00435682.
The role of the cdc9 ligase in replication and excision repair in Saccharomyces cerevisiae.
McCready S, Cox B
Curr Genet. 2013; 6(1):29-30.
PMID: 24186368
DOI: 10.1007/BF00397638.
Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae.
Montelone B, Prakash S, Prakash L
Curr Genet. 2013; 4(3):223-32.
PMID: 24185997
DOI: 10.1007/BF00420503.