6.
Riccardi C, Nicoletti I
. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2007; 1(3):1458-61.
DOI: 10.1038/nprot.2006.238.
View
7.
Mehrzadi S, Khalili H, Fatemi I, Malayeri A, Siahpoosh A, Goudarzi M
. Zingerone Mitigates Carrageenan-Induced Inflammation Through Antioxidant and Anti-inflammatory Activities. Inflammation. 2020; 44(1):186-193.
DOI: 10.1007/s10753-020-01320-y.
View
8.
Manjunatha J, Bettadaiah B, Negi P, Srinivas P
. Synthesis of quinoline derivatives of tetrahydrocurcumin and zingerone and evaluation of their antioxidant and antibacterial attributes. Food Chem. 2012; 136(2):650-8.
DOI: 10.1016/j.foodchem.2012.08.052.
View
9.
Chen L, Wu J, Li Z, Liu Q, Zhao X, Yang H
. Metabolomic analysis of energy regulated germination and sprouting of organic mung bean (Vigna radiata) using NMR spectroscopy. Food Chem. 2019; 286:87-97.
DOI: 10.1016/j.foodchem.2019.01.183.
View
10.
Press B, Di Grandi D
. Permeability for intestinal absorption: Caco-2 assay and related issues. Curr Drug Metab. 2008; 9(9):893-900.
DOI: 10.2174/138920008786485119.
View
11.
Shin S, Kim J, Young Chung H, Jeong J
. Zingerone as an antioxidant against peroxynitrite. J Agric Food Chem. 2005; 53(19):7617-22.
DOI: 10.1021/jf051014x.
View
12.
Zhao Q, Zou Y, Huang C, Lan P, Zheng J, Ou S
. Formation of a Hydroxymethylfurfural-Cysteine Adduct and Its Absorption and Cytotoxicity in Caco-2 Cells. J Agric Food Chem. 2017; 65(45):9902-9908.
DOI: 10.1021/acs.jafc.7b03938.
View
13.
Hemalatha K, Stanely Mainzen Prince P
. Antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on experimentally induced myocardial infarcted rats. J Biochem Mol Toxicol. 2015; 29(4):182-8.
DOI: 10.1002/jbt.21683.
View
14.
Wongmaneepratip W, Gao X, Yang H
. Effect of food processing on reduction and degradation pathway of pyrethroid pesticides in mackerel fillet (Scomberomorus commerson). Food Chem. 2022; 384:132523.
DOI: 10.1016/j.foodchem.2022.132523.
View
15.
Es-Safi N, Cheynier V, Moutounet M
. Role of aldehydic derivatives in the condensation of phenolic compounds with emphasis on the sensorial properties of fruit-derived foods. J Agric Food Chem. 2002; 50(20):5571-85.
DOI: 10.1021/jf025503y.
View
16.
Agarwal M, Walia S, Dhingra S, Khambay B
. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Manag Sci. 2001; 57(3):289-300.
DOI: 10.1002/ps.263.
View
17.
Kosinska-Cagnazzo A, Diering S, Prim D, Andlauer W
. Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chem. 2014; 170:288-94.
DOI: 10.1016/j.foodchem.2014.08.070.
View
18.
Bauer-Marinovic M, Taugner F, Florian S, Glatt H
. Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2. Arch Toxicol. 2012; 86(5):701-11.
DOI: 10.1007/s00204-012-0807-5.
View
19.
Bakhiya N, Monien B, Frank H, Seidel A, Glatt H
. Renal organic anion transporters OAT1 and OAT3 mediate the cellular accumulation of 5-sulfooxymethylfurfural, a reactive, nephrotoxic metabolite of the Maillard product 5-hydroxymethylfurfural. Biochem Pharmacol. 2009; 78(4):414-9.
DOI: 10.1016/j.bcp.2009.04.017.
View
20.
Mahomoodally M, Aumeeruddy M, Rengasamy K, Roshan S, Hammad S, Pandohee J
. Ginger and its active compounds in cancer therapy: From folk uses to nano-therapeutic applications. Semin Cancer Biol. 2019; 69:140-149.
DOI: 10.1016/j.semcancer.2019.08.009.
View