» Articles » PMID: 35575941

T-cell Epitope-based Vaccine Prediction Against Aspergillus Fumigatus: a Harmful Causative Agent of Aspergillosis

Overview
Specialty Biotechnology
Date 2022 May 16
PMID 35575941
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Among the most common causes of invasive aspergillosis and acute bronchopulmonary aspergillosis is Aspergillus fumigatus. Transmission with A. fumigatus produces aggressive aspergillosis in allogeneic haematopoietic stem cell transplant recipients, HIV patients, and cancer patients. Asthmatics and cystic fibrosis patients are allergic to A. fumigatus. MHC class-II binding epitopes can initiate immunogenic responses in patients. In this study, we deployed immunoinformatic study to reveal epitopes from fungal proteins.

Results: In modern research, we found multiple epitopes ITLKLLHRYSYKLAG, KLVLRAFPNHFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD from crucial proteins of A. fumigatus 5,8-linoleate diol synthase (ACO55067.2) and ChainB-chitinase A1 (2XVN_B). RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD epitopes interact with HLA-DRB01_0101, while ITLKLLHRYSYKLAG and KLVLRAFPNHFRGDS epitopes interact with HLA-DRB01_1501. Molecular docking analysis reveals atomic contact energy (ACE) value for these five epitopes shown below -5 Kcal/mol in docked state.

Conclusions: The invasive aspergillosis and acute bronchopulmonary aspergillosis are caused by harmful fungal pathogen Aspergillus fumigatus. Our modern immunoinformatic research shows ITLKLLHRYSYKLAG, KLVLRAFPNHFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD epitopes could bind to MHC-II HLA allelic determinants and can initiate immunogenic response in patients affected by Aspergillus fumigatus.

References
1.
Thakur R, Anand R, Tiwari S, Singh A, Tiwary B, Shankar J . Cytokines induce effector T-helper cells during invasive aspergillosis; what we have learned about T-helper cells?. Front Microbiol. 2015; 6:429. PMC: 4426709. DOI: 10.3389/fmicb.2015.00429. View

2.
Kelley L, Mezulis S, Yates C, Wass M, Sternberg M . The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10(6):845-58. PMC: 5298202. DOI: 10.1038/nprot.2015.053. View

3.
Joshi A, Krishnan S, Kaushik V . Codon usage studies and epitope-based peptide vaccine prediction against Tropheryma whipplei. J Genet Eng Biotechnol. 2022; 20(1):41. PMC: 8899776. DOI: 10.1186/s43141-022-00324-5. View

4.
Lundegaard C, Lund O, Nielsen M . Prediction of epitopes using neural network based methods. J Immunol Methods. 2010; 374(1-2):26-34. PMC: 3134633. DOI: 10.1016/j.jim.2010.10.011. View

5.
Doytchinova I, Flower D . VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007; 8:4. PMC: 1780059. DOI: 10.1186/1471-2105-8-4. View