» Articles » PMID: 35568709

Variational Autoencoder Provides Proof of Concept That Compressing CDT to Extremely Low-dimensional Space Retains Its Ability of Distinguishing Dementia

Overview
Journal Sci Rep
Specialty Science
Date 2022 May 14
PMID 35568709
Authors
Affiliations
Soon will be listed here.
Abstract

The clock drawing test (CDT) is an inexpensive tool to screen for dementia. In this study, we examined if a variational autoencoder (VAE) with only two latent variables can capture and encode clock drawing anomalies from a large dataset of unannotated CDTs (n = 13,580) using self-supervised pre-training and use them to classify dementia CDTs (n = 18) from non-dementia CDTs (n = 20). The model was independently validated using a larger cohort consisting of 41 dementia and 50 non-dementia clocks. The classification model built with the parsimonious VAE latent space adequately classified dementia from non-dementia (0.78 area under receiver operating characteristics (AUROC) in the original test dataset and 0.77 AUROC in the secondary validation dataset). The VAE-identified atypical clock features were then reviewed by domain experts and compared with existing literature on clock drawing errors. This study shows that a very small number of latent variables are sufficient to encode important clock drawing anomalies that are predictive of dementia.

Citing Articles

MRI-based mild cognitive impairment and Alzheimer's disease classification using an algorithm of combination of variational autoencoder and other machine learning classifiers.

Bit S, Dey P, Maji A, Khan T J Alzheimers Dis Rep. 2025; 8(1):1434-1452.

PMID: 40034356 PMC: 11863754. DOI: 10.1177/25424823241290694.


Digital Clock and Recall: a digital, process-driven evolution of the Mini-Cog.

Gomes-Osman J, Borson S, Toro-Serey C, Banks R, Ciesla M, Jannati A Front Hum Neurosci. 2024; 18:1337851.

PMID: 39253069 PMC: 11381381. DOI: 10.3389/fnhum.2024.1337851.


Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias.

Zhang J, Bandyopadhyay S, Kimmet F, Wittmayer J, Khezeli K, Libon D Sci Rep. 2024; 14(1):17444.

PMID: 39075127 PMC: 11286895. DOI: 10.1038/s41598-024-68481-w.


Using digital assessment technology to detect neuropsychological problems in primary care settings.

Libon D, Matusz E, Cosentino S, Price C, Swenson R, Vermeulen M Front Psychol. 2023; 14:1280593.

PMID: 38046126 PMC: 10693332. DOI: 10.3389/fpsyg.2023.1280593.


FaIRClocks: Fair and Interpretable Representation of the Clock Drawing Test for mitigating classifier bias against lower educational groups.

Zhang J, Bandyopadhyay S, Kimmet F, Wittmayer J, Khezeli K, Libon D Res Sq. 2023; .

PMID: 37886534 PMC: 10602062. DOI: 10.21203/rs.3.rs-3398970/v1.


References
1.
Price C, Jefferson A, Merino J, Heilman K, Libon D . Subcortical vascular dementia: integrating neuropsychological and neuroradiologic data. Neurology. 2005; 65(3):376-82. PMC: 2746450. DOI: 10.1212/01.wnl.0000168877.06011.15. View

2.
Spenciere B, Alves H, Charchat-Fichman H . Scoring systems for the Clock Drawing Test: A historical review. Dement Neuropsychol. 2017; 11(1):6-14. PMC: 5619209. DOI: 10.1590/1980-57642016dn11-010003. View

3.
Davoudi A, Dion C, Amini S, Tighe P, Price C, Libon D . Classifying Non-Dementia and Alzheimer's Disease/Vascular Dementia Patients Using Kinematic, Time-Based, and Visuospatial Parameters: The Digital Clock Drawing Test. J Alzheimers Dis. 2021; 82(1):47-57. PMC: 8283934. DOI: 10.3233/JAD-201129. View

4.
Charlson M, Pompei P, Ales K, MacKenzie C . A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40(5):373-83. DOI: 10.1016/0021-9681(87)90171-8. View

5.
Frei B, Woodward K, Zhang M, Amini S, Tighe P, Garvan C . Considerations for Clock Drawing Scoring Systems in Perioperative Anesthesia Settings. Anesth Analg. 2019; 128(5):e61-e64. PMC: 6545889. DOI: 10.1213/ANE.0000000000004105. View