» Articles » PMID: 35563385

Reactive and Senescent Astroglial Phenotypes As Hallmarks of Brain Pathologies

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2022 May 14
PMID 35563385
Authors
Affiliations
Soon will be listed here.
Abstract

Astrocytes, as the most abundant glial cells in the central nervous system, are tightly integrated into neural networks and participate in numerous aspects of brain physiology and pathology. They are the main homeostatic cells in the central nervous system, and the loss of astrocyte physiological functions and/or gain of pro-inflammatory functions, due to their reactivation or cellular senescence, can have profound impacts on the surrounding microenvironment with pathological outcomes. Although the importance of astrocytes is generally recognized, and both senescence and reactive astrogliosis have been extensively reviewed independently, there are only a few comparative overviews of these complex processes. In this review, we summarize the latest data regarding astrocyte reactivation and senescence, and outline similarities and differences between these phenotypes from morphological, functional, and molecular points of view. A special focus has been given to neurodegenerative diseases, where these phenotypic alternations of astrocytes are significantly implicated. We also summarize current perspectives regarding new advances in model systems based on astrocytes as well as data pointing to these glial cells as potential therapeutic targets.

Citing Articles

Recent Progress in PDMS-Based Microfluidics Toward Integrated Organ-on-a-Chip Biosensors and Personalized Medicine.

Alghannam F, Alayed M, Alfihed S, Sakr M, Almutairi D, Alshamrani N Biosensors (Basel). 2025; 15(2).

PMID: 39996978 PMC: 11852457. DOI: 10.3390/bios15020076.


Neurogenesis and glial impairments in congenital hydrocephalus: insights from a BioGlue-induced fetal lamb model.

Karakaya D, Lampe K, Encinas J, Duru S, Peiro L, Oge H Fluids Barriers CNS. 2025; 22(1):20.

PMID: 39994758 PMC: 11849300. DOI: 10.1186/s12987-025-00630-3.


Cellular Senescence in Glial Cells: Implications for Multiple Sclerosis.

Maupin E, Adams K J Neurochem. 2025; 169(1):e16301.

PMID: 39831743 PMC: 11745082. DOI: 10.1111/jnc.16301.


Navigating the nano-bio immune interface: advancements and challenges in CNS nanotherapeutics.

Moulton C, Baroni A, Quagliarini E, Leone L, Digiacomo L, Morotti M Front Immunol. 2024; 15:1447567.

PMID: 39600701 PMC: 11588692. DOI: 10.3389/fimmu.2024.1447567.


The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology.

Fanlo-Ucar H, Picon-Pages P, Herrera-Fernandez V, Ill-Raga G, Munoz F Antioxidants (Basel). 2024; 13(10).

PMID: 39456461 PMC: 11505517. DOI: 10.3390/antiox13101208.


References
1.
Abjean L, Ben Haim L, Riquelme-Perez M, Gipchtein P, Derbois C, Palomares M . Reactive astrocytes promote proteostasis in Huntington's disease through the JAK2-STAT3 pathway. Brain. 2022; 146(1):149-166. DOI: 10.1093/brain/awac068. View

2.
Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage M, Aubry F, Auregan G, Guillermier M . The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases. J Neurosci. 2015; 35(6):2817-29. PMC: 6605603. DOI: 10.1523/JNEUROSCI.3516-14.2015. View

3.
Verkhratsky A, Nedergaard M, Hertz L . Why are astrocytes important?. Neurochem Res. 2014; 40(2):389-401. DOI: 10.1007/s11064-014-1403-2. View

4.
Sofroniew M, Vinters H . Astrocytes: biology and pathology. Acta Neuropathol. 2009; 119(1):7-35. PMC: 2799634. DOI: 10.1007/s00401-009-0619-8. View

5.
Mor E, Cabilly Y, Goldshmit Y, Zalts H, Modai S, Edry L . Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res. 2011; 39(9):3710-23. PMC: 3089466. DOI: 10.1093/nar/gkq1325. View