» Articles » PMID: 35559677

Intracellular Silicification by Early-branching Magnetotactic Bacteria

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2022 May 13
PMID 35559677
Authors
Affiliations
Soon will be listed here.
Abstract

Biosilicification-the formation of biological structures composed of silica-has a wide distribution among eukaryotes; it plays a major role in global biogeochemical cycles, and has driven the decline of dissolved silicon in the oceans through geological time. While it has long been thought that eukaryotes are the only organisms appreciably affecting the biogeochemical cycling of Si, the recent discoveries of silica transporter genes and marked silicon accumulation in bacteria suggest that prokaryotes may play an underappreciated role in the Si cycle, particularly in ancient times. Here, we report a previously unidentified magnetotactic bacterium that forms intracellular, amorphous silica globules. This bacterium, phylogenetically affiliated with the phylum Nitrospirota, belongs to a deep-branching group of magnetotactic bacteria that also forms intracellular magnetite magnetosomes and sulfur inclusions. This contribution reveals intracellularly controlled silicification within prokaryotes and suggests a previously unrecognized influence on the biogeochemical Si cycle that was operational during early Earth history.

Citing Articles

Magnetotactic bacteria affiliated with diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

Mangin C, Benzerara K, Bergot M, Menguy N, Alonso B, Fouteau S ISME J. 2025; 19(1).

PMID: 39776138 PMC: 11773610. DOI: 10.1093/ismejo/wrae260.


Will tomorrow's mineral materials be grown?.

Cosmidis J Microb Biotechnol. 2023; 16(9):1713-1722.

PMID: 37522764 PMC: 10443349. DOI: 10.1111/1751-7915.14298.


Bullet-shaped magnetosomes and metagenomic-based magnetosome gene profiles in a deep-sea hydrothermal vent chimney.

Nakano S, Furutani H, Kato S, Kouduka M, Yamazaki T, Suzuki Y Front Microbiol. 2023; 14:1174899.

PMID: 37440886 PMC: 10335762. DOI: 10.3389/fmicb.2023.1174899.


Insight into the metabolic potential and ecological function of a novel Magnetotactic in coral reef habitat.

Zhao Y, Zhang W, Pan H, Chen J, Cui K, Wu L Front Microbiol. 2023; 14:1182330.

PMID: 37342564 PMC: 10278575. DOI: 10.3389/fmicb.2023.1182330.


Key gene networks that control magnetosome biomineralization in magnetotactic bacteria.

Liu P, Zheng Y, Zhang R, Bai J, Zhu K, Benzerara K Natl Sci Rev. 2023; 10(1):nwac238.

PMID: 36654913 PMC: 9840458. DOI: 10.1093/nsr/nwac238.


References
1.
Marron A, Ratcliffe S, Wheeler G, Goldstein R, King N, Not F . The Evolution of Silicon Transport in Eukaryotes. Mol Biol Evol. 2016; 33(12):3226-3248. PMC: 5100055. DOI: 10.1093/molbev/msw209. View

2.
Liu P, Tamaxia A, Liu Y, Qiu H, Pan J, Jin Z . Identification and characterization of magnetotactic Gammaproteobacteria from a salt evaporation pool, Bohai Bay, China. Environ Microbiol. 2021; 24(2):938-950. DOI: 10.1111/1462-2920.15516. View

3.
Blondeau M, Sachse M, Boulogne C, Gillet C, Guigner J, Skouri-Panet F . Amorphous Calcium Carbonate Granules Form Within an Intracellular Compartment in Calcifying Cyanobacteria. Front Microbiol. 2018; 9:1768. PMC: 6087745. DOI: 10.3389/fmicb.2018.01768. View

4.
Greenberg M, Canter K, Mahler I, Tornheim A . Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. Biophys J. 2004; 88(2):1496-9. PMC: 1305151. DOI: 10.1529/biophysj.104.047068. View

5.
Lefevre C, Bazylinski D . Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013; 77(3):497-526. PMC: 3811606. DOI: 10.1128/MMBR.00021-13. View