» Articles » PMID: 35558900

Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics

Overview
Journal ACS Energy Lett
Date 2022 May 13
PMID 35558900
Authors
Affiliations
Soon will be listed here.
Abstract

Having captivated the research community with simple fabrication processes and staggering device efficiencies, perovskite-based optoelectronics are already on the way to commercialization. However, one potential obstacle to this commercialization is the almost exclusive use of toxic, highly coordinating, high boiling point solvents to make perovskite precursor inks. Herein, we demonstrate that nonpolar organic solvents, such as toluene, can be combined with butylamine to form an effective solvent for alkylammonium-based perovskites. Beyond providing broader solvent choice, our finding opens the possibility of blending perovskite inks with a wide range of previously incompatible materials, such as organic molecules, polymers, nanocrystals, and structure-directing agents. As a demonstration, using this solvent, we blend the perovskite ink with 6,6-phenyl-C-61-butyric acid methyl ester and show improved perovskite crystallization and device efficiencies. This processing route may enable a myriad of new possibilities for tuning the active layers in efficient photovoltaics, light-emitting diodes, and other semiconductor devices.

Citing Articles

Aerosol-Assisted Crystallization Lowers Intrinsic Quantum Confinement and Improves Optoelectronic Performance in FAPbI Films.

Kaur G, Hameed M, Lee J, Elmestekawy K, Johnston M, Briscoe J J Phys Chem Lett. 2025; 16(9):2212-2222.

PMID: 39983098 PMC: 11891977. DOI: 10.1021/acs.jpclett.5c00041.


Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Caicedo-Reina M, Rocha-Ortiz J, Wu J, Bornschlegl A, Leon S, Barabash A Chemistry. 2025; 31(13):e202404251.

PMID: 39807597 PMC: 11874900. DOI: 10.1002/chem.202404251.


Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics.

Hu S, Thiesbrummel J, Pascual J, Stolterfoht M, Wakamiya A, Snaith H Chem Rev. 2024; 124(7):4079-4123.

PMID: 38527274 PMC: 11009966. DOI: 10.1021/acs.chemrev.3c00667.


Substitution of lead with tin suppresses ionic transport in halide perovskite optoelectronics.

Dey K, Ghosh D, Pilot M, Pering S, Roose B, Deswal P Energy Environ Sci. 2024; 17(2):760-769.

PMID: 38269299 PMC: 10805128. DOI: 10.1039/d3ee03772j.


Photovoltaic Performance of FAPbI Perovskite Is Hampered by Intrinsic Quantum Confinement.

Elmestekawy K, Gallant B, Wright A, Holzhey P, Noel N, Johnston M ACS Energy Lett. 2023; 8(6):2543-2551.

PMID: 37324536 PMC: 10262274. DOI: 10.1021/acsenergylett.3c00656.


References
1.
Wojciechowski K, Leijtens T, Siprova S, Schlueter C, Horantner M, Wang J . C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. J Phys Chem Lett. 2015; 6(12):2399-405. DOI: 10.1021/acs.jpclett.5b00902. View

2.
Pang S, Zhou Y, Wang Z, Yang M, Krause A, Zhou Z . Transformative Evolution of Organolead Triiodide Perovskite Thin Films from Strong Room-Temperature Solid-Gas Interaction between HPbI3-CH3NH2 Precursor Pair. J Am Chem Soc. 2016; 138(3):750-3. DOI: 10.1021/jacs.5b11824. View

3.
Lin Y, Bai Y, Fang Y, Chen Z, Yang S, Zheng X . Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. J Phys Chem Lett. 2018; 9(3):654-658. DOI: 10.1021/acs.jpclett.7b02679. View

4.
Liu Z, Meng K, Wang X, Qiao Z, Xu Q, Li S . In Situ Observation of Vapor-Assisted 2D-3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells. Nano Lett. 2020; 20(2):1296-1304. DOI: 10.1021/acs.nanolett.9b04759. View

5.
Ke W, Spanopoulos I, Stoumpos C, Kanatzidis M . Myths and reality of HPbI in halide perovskite solar cells. Nat Commun. 2018; 9(1):4785. PMC: 6235929. DOI: 10.1038/s41467-018-07204-y. View