» Articles » PMID: 35558304

Facile Synthesis of AgBiS Nanocrystals for High Responsivity Infrared Detectors

Overview
Journal RSC Adv
Specialty Chemistry
Date 2022 May 13
PMID 35558304
Authors
Affiliations
Soon will be listed here.
Abstract

AgBiS nanocrystals are emerging optoelectronic materials due to their solution-processability, earth abundance and non-toxic properties. We report a facile method to prepare AgBiS nanocrystals in ambient conditions. The nanocrystals are of high crystallinity and without byproducts, which make them suitable for solution processable optoelectronic devices. They were incorporated into graphene transistors for their near infrared detection application. Photodetectors with a high photo-responsivity of 10 A W for 895 nm wavelength at a low operation voltage of 0.1 V were demonstrated.

Citing Articles

Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications.

Mawaddah F, Bisri S Nanomaterials (Basel). 2024; 14(16).

PMID: 39195366 PMC: 11357519. DOI: 10.3390/nano14161328.


Cubic AgBiS Powder Prepared Using a Facile Reflux Method for Photocatalytic Degradation of Dyes.

Wang W, Gao C, Chen Y, Shen T, Dong M, Yao B Micromachines (Basel). 2023; 14(12).

PMID: 38138380 PMC: 10746013. DOI: 10.3390/mi14122211.


Mixed AgBiS nanocrystals for photovoltaics and photodetectors.

Burgues-Ceballos I, Wang Y, Konstantatos G Nanoscale. 2022; 14(13):4987-4993.

PMID: 35258069 PMC: 8969455. DOI: 10.1039/d2nr00589a.


Low-Cost RoHS Compliant Solution Processed Photovoltaics Enabled by Ambient Condition Synthesis of AgBiS Nanocrystals.

Akgul M, Figueroba A, Pradhan S, Bi Y, Konstantatos G ACS Photonics. 2020; 7(3):588-595.

PMID: 32215281 PMC: 7082833. DOI: 10.1021/acsphotonics.9b01757.

References
1.
Ni Z, Ma L, Du S, Xu Y, Yuan M, Fang H . Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors. ACS Nano. 2017; 11(10):9854-9862. DOI: 10.1021/acsnano.7b03569. View

2.
Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T . Fine structure constant defines visual transparency of graphene. Science. 2008; 320(5881):1308. DOI: 10.1126/science.1156965. View

3.
Schwierz F . Graphene transistors. Nat Nanotechnol. 2010; 5(7):487-96. DOI: 10.1038/nnano.2010.89. View

4.
Shi S, Xu X, Ralph D, McEuen P . Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. Nano Lett. 2011; 11(4):1814-8. DOI: 10.1021/nl200522t. View

5.
Ruan G, Sun Z, Peng Z, Tour J . Growth of graphene from food, insects, and waste. ACS Nano. 2011; 5(9):7601-7. DOI: 10.1021/nn202625c. View