» Articles » PMID: 35552509

Plants Grown in Apollo Lunar Regolith Present Stress-associated Transcriptomes That Inform Prospects for Lunar Exploration

Overview
Journal Commun Biol
Specialty Biology
Date 2022 May 13
PMID 35552509
Authors
Affiliations
Soon will be listed here.
Abstract

The extent to which plants can enhance human life support on other worlds depends on the ability of plants to thrive in extraterrestrial environments using in-situ resources. Using samples from Apollo 11, 12, and 17, we show that the terrestrial plant Arabidopsis thaliana germinates and grows in diverse lunar regoliths. However, our results show that growth is challenging; the lunar regolith plants were slow to develop and many showed severe stress morphologies. Moreover, all plants grown in lunar soils differentially expressed genes indicating ionic stresses, similar to plant reactions to salt, metal and reactive oxygen species. Therefore, although in situ lunar regoliths can be useful for plant production in lunar habitats, they are not benign substrates. The interaction between plants and lunar regolith will need to be further elucidated, and likely mitigated, to best enable efficient use of lunar regolith for life support within lunar stations.

Citing Articles

Survivability and life support in sealed mini-ecosystems with simulated planetary soils.

Sato T, Abe K, Koseki J, Seto M, Yokoyama J, Akashi T Sci Rep. 2024; 14(1):26322.

PMID: 39487149 PMC: 11530624. DOI: 10.1038/s41598-024-75328-x.


The physiology of plants in the context of space exploration.

Maffei M, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A Commun Biol. 2024; 7(1):1311.

PMID: 39394270 PMC: 11470014. DOI: 10.1038/s42003-024-06989-7.


Telomere dynamics and oxidative stress in Arabidopsis grown in lunar regolith simulant.

Barcenilla B, Kundel I, Hall E, Hilty N, Ulianich P, Cook J Front Plant Sci. 2024; 15:1351613.

PMID: 38434436 PMC: 10908177. DOI: 10.3389/fpls.2024.1351613.


Effects of Mars Global Simulant (MGS-1) on Growth and Physiology of Sweet Potato: A Space Model Plant.

Chinnannan K, Somagattu P, Yammanuru H, Nimmakayala P, Chakrabarti M, Reddy U Plants (Basel). 2024; 13(1).

PMID: 38202365 PMC: 10780443. DOI: 10.3390/plants13010055.


Phosphorus-solubilizing bacteria improve the growth of Nicotiana benthamiana on lunar regolith simulant by dissociating insoluble inorganic phosphorus.

Xia Y, Yuan Y, Li C, Sun Z Commun Biol. 2023; 6(1):1039.

PMID: 37945659 PMC: 10636133. DOI: 10.1038/s42003-023-05391-z.


References
1.
Hulsen T, de Vlieg J, Alkema W . BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008; 9:488. PMC: 2584113. DOI: 10.1186/1471-2164-9-488. View

2.
Bolger A, Lohse M, Usadel B . Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114-20. PMC: 4103590. DOI: 10.1093/bioinformatics/btu170. View

3.
Paul A, Zupanska A, Schultz E, Ferl R . Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol. 2013; 13:112. PMC: 3750915. DOI: 10.1186/1471-2229-13-112. View

4.
Paul A, Haveman N, Califar B, Ferl R . Epigenomic Regulators and Differentially Condition the Spaceflight Response in Arabidopsis. Front Plant Sci. 2021; 12:691790. PMC: 8475764. DOI: 10.3389/fpls.2021.691790. View

5.
Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, Jha S . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2012; 29(1):15-21. PMC: 3530905. DOI: 10.1093/bioinformatics/bts635. View